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ABSTRACT

As groups grow in size, they gain access to additional resources, creating opportunities for

collective intelligence and collective action. However, at very large scales, group decision-

making becomes prohibitively slow and difficult to coordinate. Traditional solutions include

representative decision-making and/or a shift from deliberation to voting. Both approaches

sacrifice desirable properties. Representative decision-making loses the potential benefits of

collective intelligence and introduces hierarchies that may place the interests of specific indi-

viduals ahead of the interests of the group. Voting sacrifices generativity: allowing a choice

between predefined options, without allowing for improvement to those options. Arrow’s

impossibility theorem also fundamentally limits the fairness of voting. This project pro-

poses Networked Deliberation as a potential means of effective large-scale decision-making.

In Networked Deliberation, members of a large group are repeatedly partitioned into small

deliberative pods. Overlap between pods at different stages enables group-wide diffusion of

information and preferences. Different methods for assigning members to pods result in dif-

ferent network topologies. This work combines observational study, agent-based modeling,

and an experiment to evaluate and better understand network deliberation. An empirical

observation of WikiProjects on the English-language Wikipedia identifies the network prop-

erties of the most effective projects. A simple agent-based model of Network Deliberation

shows improvements over conventional deliberation in the presence of strong social influence.

Finally, a controlled experiment studies network deliberation in a real world setting, tracking

how individual preferences evolve, and finding evidence that network deliberation provides

protection against negative consequences of social influence. This work seeks to provide a

framework that enables an understanding of of how very large groups can quickly develop a

consensus, enabling a more effective use of shared resources to achieve common goals.
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CHAPTER 1

Introduction

Pulling together is the aim of

despotism and tyranny. Free men pull

in all kinds of directions.

—Lord Vetinari in The Truth, Terry

Pratchett

The ability of large groups to reach mutually agreeable decisions is key to democratic gov-

ernance, organizational effectiveness, social movements, and peer production. Faced with the

intractability of large-scale participatory decision-making, traditional systems have sacrificed

one or more desirable properties, such as participation (as in representative democracy), de-

liberation (as in voting), equality (as in command hierarchies), and speed (as in formal

consensus). This dissertation examines the emerging role of internet-enabled collaborative

networks in overcoming these historical limitations.

In recent years, examples of large-scale collaborations have emerged that seem to achieve

the previously unachievable. Millions of volunteer Wikipedia editors have created a high-

quality encyclopedia without formal centralized leadership [52, 35]. The Free Software move-

ment has produced the Linux kernel and GNU operating system, which power much of the

modern internet [18, 8, 68]. Social movements such as the Arab Spring, Occupy, Black

Lives Matter, and Podemos have brought attention to deeply entrenched social issues, and

in some cases, contriubted to political regime changes [79, 39]. Participatory governance

at such scales is unprecedented. The emergence of these large-scale decentralized collabora-

tions has been attributed to the fast, bidirectional, and global communication enabled by the

internet [79, 8]. A better understanding of how specifically such communication sidesteps

historical barriers to large-scale collaboration will contribute to more effective policy as well

as best practices for organizational design and intervention. This dissertation focuses on

one particularly challenging aspect of such collaborations: decision-making. Specifically, I

examine how when groups are too large for all members to participate in all discussions,

1



the course and outcome of the decision-making process is influenced by the communication

network structure: the shape of who talks to whom.

In this dissertation, I combine observational, agent-based modeling, and experimental

methods to evaluate the role of network structure in large-scale participatory decision-

making. I focus on group sizes well above the estimated 5–8 individual maximum for ef-

fective small goups [32, 58, 62], ranging from 32–33 participants in the experimental study

to millions of editors in the observational study of English-language Wikipedia WikiPro-

jects. Taken together, the findings in these studies suggests that small, tightly-knit pods,

interlocked through the sharing of members can benefit such collaborations. This com-

mon structure, which I refer to as network deliberation, appears to preserve some benefits

of small-scale deliberation, while allowing efficient diffusion of information through large

groups. Furthermore, I find evidence that network deliberation can mitigate some of the

negative aspects of social influence. These findings provide insight into the success of exist-

ing large-scale collaborations as well as provide guidance for the design of new sociotechnical

systems.

1.1 Theoretical Framework

This dissertation draws on ideas from network science, economics, and complex systems.

While a topic as broad as decision-making can be studied from many perspectives, these

fields provide a minimal framework for studying how individual preferences and behaviors

interact with interpersonal communication networks to influence group decisions.

The fundamental challenge of large-scale collective decision-making is how to reconcile

the conflicting preferences of individual group members. This challenge has been studied

formally in social choice theory, a sub-field of economics. Prior work in social choice theory

has found, somewhat discouragingly, that even when all individual preferences are known

perfectly, making a fair collective decision isn’t always possible. In some cases, the method

of aggregating individual preferences (i.e. the voting system) can influence the outcome.

Social choice theory focuses on understanding of these limitations, such as the Condorcet

Paradox [19] and Arrow’s Impossibility Theorem [4]. While social choice theory typically

assumes fixed fundamental preferences, preferences can be instrumental in nature, varying

with factors such as available knowledge, group identity, or perspective. This dissertation

finds hope in the transformative potential of the deliberative process. Social choice theory

typically assumes fixed individual preferences. Deliberation allows individuals to influence

and change each other’s preferences, which creates the potential to sidestep the historical

limitations of social choice theory. When individual preferences are allowed to vary, it
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becomes possible for an irreconcilable set of preferences to evolve into one with a clear

winner. So far, this possibility has received relatively little attention, most likely due to

the historical intractability of large-scale deliberative decision-making. This dissertation

explores the potential of effective large-scale deliberation, as enabled by the internet. Such

large-scale deliberation creates the potential for members to resolve conflicting preferences

and reach mutually acceptable decisions without relying on coercive or hierarchical processes

that might introduce power imbalances or informational biases.

Network science provides the tools for analyzing the structure of interpersonal networks.

Interpersonal interactions in large collaborations are necessarily structured: when a group is

too large for each individual to interact with all other individuals, the question of “who talks

to whom?” creates a network structure. By modelling collaborative groups as a collection of

abstract “nodes” connected by interpersonal communication links, a group’s communication

structure can be studied in isolation. Findings from network science suggest that social

processes on networks can be influenced by structural properties such as the degree: the

number of links a node has, geodesic distance the number of links separating two nodes,

and clustering: how common it is for two linked nodes to share links with a third [10].

While network structure is certainly not the only factor to influence collective decision-

making, studying network structure in isolation provides a baseline for the further study of

social dynamics and other non-structural factors. Network structure is also significant as a

potential point of intervention in cases where social dynamics may be difficult to influence.

This dissertation also incorporates theoretical and computational models from social

learning theory. Social learning theory acknowledges that individuals rarely learn or make

decisions in isolation, but rather learn from and imitate others in their social network [37].

Social learning theory formalizes both the types of tasks collectives perform [44] and the

behavioral strategies individuals might employ [56, 7]. These strategies range from pure imi-

tation to critical evaluation, depending on the circumstances being modeled. Social learning

models provide a baseline to compare empirical observations against, as well as a language

and framework for placing findings into the context of the greater social learning literature.

Throughout this dissertation, I motivate and develop a novel theoretical framework, which

I call network deliberation. Network deliberation is an analytical framework that can be

applied both to the empirical observation of existing sociotechical systems, as well as to

guide the creation and analysis of simplified models. My review of the literature identifies

a common theme among successful large-scale internet-enabled collaborations: large collec-

tives composed of interlocking smaller groups. These groups have various names, including:

committees, working groups, teams, circles, cores, syndicates, affinity groups, zones, and

nodes. As an abstraction of these small interlocking group, I will use the term “pods.”
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Network deliberation describes large-scale collective deliberation achieved through interlock-

ing pods. As in the theories of interlocking directorates [57], interlocking publics [42], and

network rotation [71], pods allow for beneficial small group dynamics, while the overlap be-

tween pods enables diffusion of information and opinions through the greater collective. The

network deliberation framework abstracts and generalizes phenomena such as interlocking

directorates and interlocking publics, allowing their commonalities to be studied from the

perspective of network structure. The framework also provides concrete parameters such as

pod size and pod assignment method, which can be used in quantitative analysis of models

and experiments, and provides a common language for making comparisons across models

and experiments. Network deliberation is conceptually similar to network rotation in that

both describe large-scale deliberation through repeated small-group interactions. There are

two key differences, one conceptual, and one relating to network structure. Conceptually,

network rotation reassigns pod membership one individual at a time in order to optimize

certain network properties, while network deliberation focuses on providing an analytical

framework for understanding the impact of different pod assignment methods on network

structure and deliberation outcome. The one-at-a-time reassignments of network rotation

also creates pods with high overlap, while network deliberation is focused on simultaneous

or sequential pods with little overlap.

In network deliberation, the method of assigning individuals to pods (whether deliberate

or self-organized) can produce interpersonal networks with varying structures. The central

questions of this dissertation are 1. does an interlocking-pod structure improve deliberation

relative to conventional structures? and 2. how does the structure of these interlocking-pod

networks influence the process and outcome of deliberation in large collaborations?

1.2 Methodology

Studying collective behavior on the scale of hundreds, thousands, and millions presents

significant methodological challenges. To address these challenges, this dissertation combines

multiple methodologies, including: observational study, agent-based modelling, and field

experiments. I use observational studies to reconstruct real-world collaborative networks

from the English-language Wikipedia and analyze the collaborative output of those networks

(Chapter 2). Observational study has the benefits of scaling to millions of individuals in a

real-world environment. However, observational studies typically cannot establish causal

relationships, only correlation.

To begin to address the causal relationship between network structure and deliberative

outcome, I use agent-based models (Chatpers 2 and 3). Agent-based models are computa-
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tional models of large systems composed of many agents following simple behavioral rules.

In this case, agents represent individual collaborators, and their behavior is determined by

their preferences and their strategy for incorporating information learned from their neigh-

bors. Agent-based models can establish causality, and do so in group sizes limited only by

available computing power. As simplified models, however, their results cannot necessarily

be generalized to real-world scenarios.

To bridge the limitations of the above methods, this dissertation includes a controlled field

experiment evaluating the effect of network deliberation in real-world collective decision-

making (Chapter 4).

1.3 Contributions

This dissertation describes the contributions of three projects. Chapter 2 describes an obser-

vational and computational study of WikiProjects on the English-language Wikipedia. This

study examines one of the real-world collaborations that inspired the network deliberation

framework and shows that variations in the network structure of such a collaboration can

correlate with quality indicators. Specifically, Chapter 2 reports the following contributions:

• Despite an overall productivity/performance trade-off, more tightly-knit WikiProjects

tend to produce articles more quickly as well as produce higher-quality articles;

• The high performance of tightly-knit networks is consistent with individuals showing

susceptibility to social influence;

• Unequal participation is associated with lower performance;

• The agent-based model shows that the relationship between quality and productivity

can be influenced by both network structure and individual behavior.

Chapter 3 describes an agent-based model of network deliberation, comparing perfor-

mance across several network topologies and social learning strategies. The primary contri-

butions are:

• When agents are strongly susceptible to social influence, Network deliberation identifies

solutions of higher quality than conventional deliberation, while requiring less time to

converge.

• Within network deliberation, agents who base behavior on social influence peroform

best on networks with short paths. However, when agents act on their own judge-

ment, they perform best on networks with longer paths, consistent with findings for

conventional deliberation. [7].
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• A novel social learning strategy, confident-neighbor, which outperforms conventional

strategies across all networks despite relying on strictly less information.

Chapter 4 describes an experimental study network deliberation in large-scale human

collaborations. The study design uses periodic ranked-choice polls to track individual pref-

erences throughout the course of a large-scale online deliberation. By varying communication

network structure and tracking the evolution of individual preferences, this experiment eval-

uates the ability of network deliberation to resolve conflict and build consensus, relative to

conventional single-group deliberation. The primary contributions are:

• Findings support the hypothesis that network deliberation is better at facilitating

agreement than conventional deliberation.

• Findings suggest that network deliberation can provide protection against information

cascades.

• Findings include no evidence that network deliberation facilitates substantial conflict-

resolution, but indicate that it may provide protection against polarization.

The above contributions suggest that network deliberation structure may be an important

factor in the success of existing large-scale, internet-enabled collaborations, and furthermore,

that it may help guide the design and organization of future collaborations. Specifically, net-

work deliberation appears to help moderate the effects of social influence, providing some

protection against both information cascades due to positive social influence, and polar-

ization due to negative social influence. In summary, the work presented in the following

chapters provides a framework for the future study of large-scale participatory governance,

and provides evidence that large-scale participatory governance can be both practical and

effective.
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CHAPTER 2

Network Structure, Productivity, and

Performance in WikiProjects

The problem with Wikipedia is that it

only works in practice. In theory, it’s a

total disaster.

—Gareth Owen [29]

The internet has enabled collaborations at a global scale. Wikipedia, a free encyclopedia

that invites anyone to edit articles, is one of the most successful and visible examples of

such a collaboration. Organizing groups without top-down control is notoriously difficult

[32], and yet Wikipedia, with millions of self-organized editors, has produced a high-quality

encyclopedia [35, 52]. A better theoretical understanding of projects like Wikipedia is highly

desirable as it could help inform the design of new collaborative projects. We focus on one

aspect of a large-scale decentralized collaboration: its network structure [64]. How does

Wikipedia’s non-hierarchical structure relate to its success?

We look at WikiProjects on the English-language Wikipedia. WikiProjects are collections

of thematically related articles, each with their own standards and norms. When measuring

the quality of collaborative projects, there are at least two distinct measures to consider. The

first measure is short-term: how effective a unit of work is at improving the collaboration’s

output, which we call productivity. The other measure is long-term: the highest quality

typically reached by an output, which we call performance. These two terms are often

used interchangeably, but we find it fruitful to distinguish between the two. We find that

Wikipedia exhibits an overall trade-off between performance and productivity. However,

some WikiProjects surpass others in both productivity and performance, suggesting the

existence of factors that correlate positively with both. We are particularly interested in

factors that give insight into the success of Wikipedia as a large-scale collaboration, such as

those relating to the network structure of interactions between editors.
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Our study focuses on the coeditor networks of each WikiProject: which editors have edited

at least one article in common? These relationships represent the possible flow of informa-

tion. We focus specifically on mean degree, degree skewness, and path length. High-degree

editors have more collaborators, which can increase diversity and access to information at

the possible expense of higher coordination costs [45, 37]. Highly skewed degree distributions

can amplify the biases of high-degree editors while reducing the need for explicit coordina-

tion [50]. Networks with shorter path lengths allow information to travel more quickly at

the possible expense of less local diversity [60, 7].

In addition to our empirical study, we use agent-based modeling to examine the conse-

quences of specific assumptions on networked collaboration. We model individual behavior

using a social learning strategy that assumes agents 1. can only access a fraction of the

model’s state, 2. interact with others who share their concerns, and 3. integrate their

preferences into a single state. Our model is the first we are aware of to incorporate these

assumptions, which are present across many real-world collaborations, including Wikipedia.

Our main findings are:

• Despite an overall performance/productivity trade-off, WikiProjects with low-degree

coeditor networks tend to have both higher performance and higher productivity;

• Short paths are associated with higher performance, consistent with a conformity-based

learning strategy;

• Structural inequality, as measured by degree skewness, is associated with lower perfor-

mance;

• Our agent-based model shows that the productivity and performance of collaborations

can depend on network degree, and that the direction of that dependence varies with

social learning strategy.

Our findings shed light on the importance of network structure for successful collaboration.

These findings might be informative for future interventions that recommend tasks based

on how they will influence network structure, or for interventions that seek to encourage

behaviors complementary to existing network structure.

2.1 Background and Related Work

The present paper investigates the relationship between social networks and collaboration

outcomes. This connection has been explored by a number of theoretical, numerical, and

small-scale lab studies in the field of social learning. We contribute to this literature with
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a large-scale, empirical field study. In much of the existing literature, degree distribution

correlates with outcome measures. But aside from the naive Bayes case, it is unknown

whether the correlation is explained best by degree or by another structural property, such

as characteristic path length. In the empirical networks we study, unlike artificial networks,

the structural properties vary independently, making it easier to isolate individual network

properties that correlate with outcome variables.

Social Learning. In networked social learning, agents are represented by nodes on a

network and can interact only with their neighbors. Social learning tasks can be divided into

cases where agents have generated signals (independently noisy estimates of a true value) and

those where agents have interpreted signals (solutions based on different selections of available

data) [44]. The behavior of individual agents is described by their social learning strategy.

For generated signals, a naive Bayesian approach converges to the truth when all agents have

the same degree, while the speed of convergence depends on the spectral gap between the two

largest eigenvalues of the network’s interaction matrix [24, 37]. Complex social learning tasks

can also be modeled as the problem of maximizing an objective function with many local

maxima, referred to as a rugged landscape [56, 60, 59, 41, 7]. Numerical simulations have

shown that efficient networks (those with short paths between nodes) can result in faster

convergence at the cost of a less optimal solution, due to less time for exploration [60, 41].

However, when conformity-based social learning strategies are used, efficient networks can

sometimes find more optimal solutions than inefficient ones [7]. Using an agent-based model,

Hong and Page [45] found that diverse groups can outperform groups composed of the best

individual problem-solvers.

Lab experiments. Lab-based experiments on networked collaboration suggest a com-

plex interaction between network topology and other factors. While groups of networked

human subjects perform very well on difficult graph-coloring tasks, the best performing net-

work architectures (e.g., fully-connected vs. small-world) vary from task to task [50]. The

same studies found that while human subjects tend to perform well on many networks, they

perform worst on self-organized networks, possibly due to higher structural inequality (de-

gree skewness). Similarly, some network topologies are able to reach faster decisions in the

presence of more information, while others show the opposite effect [51]. Based on lab ex-

periments, Fowler and Christakis [31] suggest that individual decisions towards altruism are

conditional on their neighbor’s behavior and “contagious” up to three degrees away. Later

experiments by Suri and Watts [78] confirmed the existence of conditional altruism, but

concluded that altruism influences only first-degree neighbors.

Digital Communities. Research on digital communities has also examined the role of

diversity and inequality in collaborative work and decision-making. In sociology, research
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has focused on the relationship between network structure and social capital. Powerful

individuals are often “brokers” who act as exclusive intermediaries between disconnected

portions of the social network [76]. Similarly, successful innovation in organizations often

occurs in “structural holes” between groups [40].

For Wikipedia specifically, Robert and Romero [70] found that larger group sizes yield

higher article ratings when the groups are diverse and experienced. Kittur and Kraut found

that different types of coordination have a complex effect on the quality of Wikipedia articles

[54]. Both explicit and implicit coordination result in higher quality articles, with explicit

coordination being especially central in the early life of an article. Shaw and Hill [74] found

that behavior in online wiki communities is consistent with the “iron law of oligarchy,”

which states that earlier members of a group will, over time, gain disproportionate decision-

making power and act increasingly out of self-interest rather than the good of the group

[61]. Similarly, Halfaker et al. [43] attributed decreasing participation on Wikipedia to

poor retention of new users. Looking specifically at Wikipedia policies determined by editor

consensus, Keegan and Fiesler [52] found a trend from flexible rule-making towards less

flexible maintenance and deliberation. Using content analysis, Morgan et al. [63] found

WikiProjects to be more loosely organized than traditional teams.

Across the broad range of work discussed above, a few key themes emerge. Both the

productivity and the performance of a collaboration are important considerations and vary

depending on both network structure and type of task [50]. While generated signal models

of social learning predict no relationship between the two [37], contagion-style innovation

models predict a trade-off [59, 7]. Such a trade-off has been observed in simulations and lab

experiments on collaboration [50, 41].

2.2 WikiProjects

Many articles on Wikipedia belong to one or more WikiProjects. WikiProjects are groups

of thematically-related articles (e.g., articles related to Philosophy). Information about an

article’s associated WikiProjects can be viewed on that article’s talk page (Figure 2.1). Each

WikiProject has its own page and talk page, containing information about conventions within

the project as well as discussions about individual articles. WikiProjects are thus distinct

communities, with distinct norms and processes. These communities are the fundamental

units of analysis in this paper.

One of the main roles of a WikiProject is to evaluate the quality of its articles. Quality

assessments are made through consensus-based deliberation on the WikiProject talk page.

Within a WikiProject, assessments are typically made using the following assessment classes
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Figure 2.1: From Wikipedia Knitting talk page. Two WikiProjects have assessed the article
as B-class quality.

(in order of increasing quality): Stub, Start, C, B, A. Different WikiProjects can assign

different quality assessments to the same article. Differences between quality assessments

could reflect different quality standards, different grading systems, different responsiveness

to changes in an article, etc.

In addition to the above assessment classes, articles on Wikipedia can be tagged as “good

article” (GA) or “featured article” (FA) quality. FA and GA determinations are made using

a Wikipedia-wide consensus, independently of WikiProject-based evaluations. FA articles

are “the best articles Wikipedia has to offer” [21]. GA articles meet “a core set of edi-

torial standards“ but are “not featured article quality” [20]. When an article is assigned

GA or FA status, WikiProject quality assessments are often updated to reflect that sta-

tus. For example, the article Mewtwo was assessed as GA status on October 5, 2009 and

shortly afterwards its quality assessment was changed from B to GA within both WikiProject

Pokémon and WikiProject Video Games. This example also illustrates a quirk of conven-

tions on Wikipedia: very often, articles pass to GA or FA directly from B, skipping A. The

majority of WikiProjects rarely use the A class quality assessment.

2.2.1 Data

Our analysis combines multiple data sets from the English-language Wikipedia [66]. For

information about edit history, we used a publicly-available data set containing metadata

(time, article id, user) about all edits from July 12, 2006 to December 2, 2015. We used a

custom script to scrape article quality assessments from logs produced by WP 1.0 Bot for
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2279 unique WikiProjects between May 4, 2006 and December 2, 2015. Finally, we used a

publicly-available database dump of page events (including rename events) to reconstruct

the article id for each title mentioned in the assessment logs.

2.2.2 Productivity and Performance

When individuals collaborate to solve a problem, there are many ways to gauge their success.

One possibility is productivity: how quickly they find a solution. Another is performance:

how good their solution is. Evidence from numerical simulations [56, 60, 59, 41, 7], lab studies

[50], and field observations [34] all suggest a trade-off between productivity and performance.

While common, this trade-off is not absolute, suggesting it is sometimes possible to simulta-

neously increase performance and productivity. The identification of factors associated with

both higher productivity and higher performance has obvious practical importance. In this

paper, we focus on how network structure relates to productivity and performance within

WikiProjects.

For a WikiProject, productivity quantifies how much participants can raise the assessed

quality of an article for a fixed amount of work. We measure work by the number of re-

visions made. Quality assessments are made through consensus of the project participants

themselves. Different projects can have different standards and practices for assessing ar-

ticle quality, so the productivity is not a measure of how quickly some objective measure

of quality improves, but rather of how quickly the project participants can reach consensus

on the improvements that need to be made and make those improvements. Because our

definition relies on assessment transitions, we must define productivity variables for each of

the project-level quality assessments: A, B, and C. For a particular grade G, we desire our

definition of productivity to meet the following conditions:

• Strictly increasing in the number of articles reaching grade G (with revision count

fixed);

• Strictly decreasing in the number of revisions (with transition count fixed);

• Independent of WikiProject size: not affected by adding an article having the same

productivity.

We now define a productivity measure which meets the above criteria. Let T (W,G) be

the set of article assessment transitions from below grade G to grade G or higher in project

W . Let N(W,G) be the number of articles in project W which ever transition from below

grade G to grade G (or higher). Given a transition t, let r(t) be the number of revisions

to the article since its previous grade transition, and let g(t) be the number of grade levels
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crossed bt t. We quantify the productivity E(W,G) as the inverse of the mean number of

revisions per transition:

E(W,G) =

 1

N(W,G)

∑
t∈T (W,G)

r(t)

g(t)

−1 , (2.1)

where the g(t) term accounts for assessments that raise article quality by several grades by

dividing the revisions evenly between all grade levels achieved.

For performance, we wish to quantify how good articles tend to be when they reach

a stable state. Measuring performance is difficult for two reasons: there is no objective

measure of article quality available, and articles are always changing, making it difficult to

know which articles should be considered complete or stable. We use an extremely simple

performance measure that gives surprisingly consistent results. In addition to per-project

quality assessment, articles can be given “featured article” or “good article” status. The

criteria for these statuses are consistent across all of Wikipedia, and any editor can participate

in the discussion and decision to award good or featured status. In other words, the good

and featured statuses are less subjective than per-project assessments.

Our performance measure P (W ) is defined simply as the percentage of articles in project

W which have reached good or featured status:

P (W ) =
f(W ) + g(W )

n(W )
, (2.2)

where f(W ) and g(W ) are the numbered of featured and good articles respectively, and

n(W ) is the total number of articles.

2.2.3 Coeditor Networks

We would like to determine how the social network structure of Wikipedia—the pattern of

who interacts with whom—relates to productivity and performance. There are several types

of interactions we could focus on, including: coediting, user talk messages, and talk page

replies. We choose to focus on coediting: when two editors have made changes to the same

article or talk page. While editors can communicate directly through user talk messages, the

number of such messages is small compared to the number of edits to article and talk pages.

We also could have considered direct replies between editors on article talk pages, but these

replies are typically seen (and intended to be seen) by everyone reading the talk page, and

are part of larger conversations. When an editor views a page, they are potentially viewing

content from and interactions between all editors who came before them, motivating our
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choice to focus on the social network structure of coeditors.

The coeditor network of a WikiProject consists of nodes representing editors and edges

connecting pairs of editors who have edited the same article. The edges are directed, with the

direction representing plausible information flow; an edge from Alice to Bob exists if Alice

edited an article and then Bob edited the same article at a later time. Note that edges can

exist in both directions. We make the simplifying assumption of unit weight for all edges.

We focus on three structural properties: degree, characteristic path length, and min-cut.

Degree and characteristic path length have been shown to correlate with performance and

productivity in some social learning settings [37, 60, 41], while min-cut can be interpreted

as a measure of decentralization, common feature of peer-produced communities such as

Wikipedia [9].

The degree distribution is the simplest network property we analyze. The in-degree (out-

degree) of a node is the number of edges to (from) that node. Taking the average of either

in-degree or out-degree gives the same value: the mean degree of the network. In our context,

the mean degree represents, on average, how many other editors each editor has collaborated

with. We also consider the skewness of the in-degree and out-degree distributions. A large

positive degree skewness for a WikiProject coeditor network implies that a small number of

editors have a very large number of collaborators, while a small positive value implies that

the editors having the most collaborators don’t have many more than a typical editor. For

traditional organizations, maximum effective team size has been variously estimated between

5 and 8 individuals [32, 58, 62], while WikiProject mean editor degrees range from 0 to 1256,

with a median of 133.

We also calculate the characteristic path length for each WikiProject coeditor network.

The distance from node s to node t is the distance of the shortest path from s to t. The

characteristic path length (or just path length) is the mean distance between all editor pairs,

excluding unconnected pairs. To account for unconnected nodes, we also measure the con-

nected fraction: the fraction of ordered node pairs with a directed path from source to sink.

The path length represents how quickly information can move through the network. Net-

works with longer paths require more interactions for information to propagate, which has

been shown to reduce productivity in some settings [60, 7].

Our final network measure quantifies the connectivity of a project’s coeditor network using

min-cut size. The minimum st-cut between nodes s and t is the smallest set of edges that

must be removed for no path exists from s to t. The minimum cut (min-cut) of a graph is

the smallest minimum st-cut over all node pairs st. The size (number of edges) of the graph

min-cut quantifies the connectivity of a graph, but only incorporates information about edges

lying on paths crossing the min-cut. Instead, we use the mean size of all minimum st-cuts,
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which we refer to as the mean min-cut. This measure quantifies the number of redundant

paths information can take through the network. Networks with higher redundancy are

more resilient to errors on one path [2] and allow innovations to propagate through complex

contagion, in which innovations are only adopted after multiple exposures [17].

The mean path and min-cut are computationally intensive, requiring distance and min-

imum st-cut calculations for all node pairs. For larger projects, these calculations are im-

practical and we thus employed sampling to determine mean path length and mean min-cut.

For mean path length, source nodes were sampled, and path length was calculated to all

destination nodes from each of these. For min-cut, node pairs were sampled. In both cases,

stratification was used to ensure the same number of nodes were were sampled from each

of 12 node degree quantiles. We estimated the error due to sampling by determining true

values for a medium-sized project, and calculating error as a function of sample-size. Sample

sizes were chosen such that relative error was below 10%. Even with sampling, however, it

was impractical to calculate these properties for the largest projects, so we exclude the 183

largest projects from the analysis.

2.2.4 Empirical Results

We find that both productivity and performance are highly right-skewed, with a small num-

ber of projects having values much higher than the average. After log-transforming the

values, both the productivity and the performance have a unimodal distribution with low

skew (see Figure 2.2). Our findings confirm the trade-off between performance and pro-

ductivity observed in many other settings (Figure 2.3). However, when looking at specific

projects, some are higher in both performance and productivity, suggesting the existence of

factors which correlate positively with both.

We also find that mean min-cut is highly correlated with degree (r = 0.980, p < 0.001),

so we exclude min-cut from regression models to prevent collinearity. The high correlation

between mean degree and min-cut implies that, in most cases, the minimum st-cut is simply

the set of edges from s or the set of edges to t. The rarity of non-trivial min-cuts suggests

that WikiProject coeditor networks have very few central bottlenecks and are thus highly

decentralized.

To study the relationship between network structure, productivity, and performance, we

model the performance and productivity of WikiProjects using ordinary least-squares linear

regression. Each WikiProject is a single observation. The models include each project’s

coeditor network properties as independent variables. We also include the following project-

level variables to control for confounding factors. For project similarity, we use the Jaccard
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Figure 2.2: Histograms of WikiProject productivity and performance. Both measures are
highly right-skewed, but form unimodal distributions with low skewness after log transfor-
mation.

similarity [46], which provides a meaningful index for comparing set membership.

C-productivity (performance only). Quantifies how quickly a WikiProject improves arti-

cles. Efficiencies for different grades are highly correlated, so we include only one.

Connected fraction. Fraction of coeditor pairs connected by a path.

Talk fraction. Fraction of total revisions made to talk pages.

Mean similarity. Mean Jaccard (by article) with other WikiProjects; a measure of topical

complexity.
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Figure 2.3: WikiProject performance is anticorrelated with B-level productivity, with Pear-
son r of -0.12. Results are similar for other grade levels. On average, highly productive
WikiProjects are under-performing, but when looking at specific WikiProjects, some are
higher than others in both performance and productivity.

Mean editors/article. Mean number of editors collaborating on each article in a WikiPro-

ject.

Article count. Total number of articles in the WikiProject.

Editor count. Total number of editors working on articles within a WikiProject.

Revision count. Total number of revisions to articles in a WikiProject.

First assessment. Timestamp of first assessment; a measure of how long a WikiProject

has been active.

Mean article age. Mean age of articles within a WikiProject.

Our models are summarized in Table 2.1. Min-cut is excluded from all models to avoid

collinearity, as it is highly correlated (r=0.44) with degree. In many cases the min-cut is

simply the removal of the highest-degree node. In-degree and out-degree skewness were also

highly correlated, so we only include out-degree skewness (results are similar for in-degree

skewness). Heavy-tailed variables are log-transformed. To test the robustness of our results,

we also computed models using cube root instead of logarithmic transformations, and using

only top- and high-importance articles. The results were qualitatively similar results for all

variables, except for degree-skewness, which had an inconsistent sign across models.
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Perf† A-Eff† B-Eff† C-Eff†

Mean degree† -0.7∗∗∗ -0.8∗∗∗ -0.6∗∗∗ -0.3∗

Out degree skew† -0.4∗∗∗ -0.5∗∗ -0.3∗ -0.06
Mean path length† -0.33∗∗∗ -0.09 -0.05 -0.09
C-productivity† -0.08∗ — — —
Connected frac. 0.01 0.09∗ 0.15∗∗∗ 0.06
Talk fraction† 0 -0.02 -0.03 0.01
Mean similarity† 0.06∗∗ -0.03 0.01 0.02
Mean editors/art.† 0.3∗∗ 0.3 0.2∗ 0.09
Article count† -0.4 0.7∗ 0.8∗∗ 0.7∗∗

Editor count† 0.4 0.9∗∗ 0.8∗∗ 0.5∗

Revision count† 0.6∗ -1∗∗ -1.1∗∗∗ -1∗∗∗

First assessment 0.05 0.11∗∗ 0.31∗∗∗ 0.43∗∗∗

Mean article age -0.03 -0.04 -0.01 -0.05∗

N 1179 966 1260 1415
R2

adj 0.37 0.17 0.30 0.43

† Log-transformed. * p < 0.05. ** p < 0.01. *** p < 0.001.

Table 2.1: Standardized coefficients for OLS models.

We see that B-productivity and C-productivity have very similar models, but that A-

productivity behaves differently in its dependence on degree skewness and connectivity. The

different behavior of A-productivity is likely explained by the observation that the A-Class

quality is infrequently used in practice, with an average of 16.8 A-Class articles per project

versus 118.2 and 251.1 for B-Class and C-Class. The A-Class quality level is usually passed

when an article reaches good or featured article status, which follow a different consensus

process from other ratings.

The negative dependence of performance on C-productivity suggests there is generally a

trade-off between performance and productivity. However, low degree is correlated with both

higher productivity and higher performance, suggesting that it is possible to improve both

simultaneously. Much of the existing numerical work on networked social learning focuses

on path length rather than degree, so we explore this result further using simulations in the

next section.

For path length, we find that longer lengths correspond to lower performance, contrary

to the conjecture that longer path lengths allow more exploration [60] but consistent with a

conformity-based social learning strategy [7].

We also observe that high degree skewness is correlated with lower performance and

lower A-productivity, suggesting that projects with decentralized coeditor networks produce

featured or good status articles more quickly, and reach higher quality ratings in general.
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2.3 Agent-Based Model

Name Social stage Individual stage
Limited
concern

Unknown
objective

Single
truth

Best+I Best neighbor Global

Conf+I Conformity Global !

Best+LI Best neighbor Local !

Conf+LI Conformity Local ! !

LMaj+LI Local majority Local ! ! !

Table 2.2: Definitions and properties of social learning strategies. Each consists of a social
stage and an individual stage. Individual stages use hill-climbing based on either the global
state, or the agent’s local concern.

In addition to our empirical study, we use a simple agent-based model of collaboration

to better understand the relationship between node degree, productivity, and performance.

Numerical models allow us to determine the effect of changing a single variable (e.g., network

structure, learning strategy), which is impractical in the empirical setting. It is important

to note that the goal of our model is not to simulate all the intricacies of Wikipedia or any

other specific platform. Rather, our goal is to determine whether the correlations we observe

between degree and outcome variables on Wikipedia can be reproduced in a more general

setting.

Past work in the field of social learning typically models collaboration as an optimization

problem: finding a state of the world which maximizes some objective function [56, 60, 59, 7].

Wikipedia itself can be regarded as an optimization problem. On Wikipedia, editors are

generally seeking to improve the quality of articles and have some personal preference over

possible states of an article. When editors do not agree on the optimal state of an article,

the conflict is resolved through a consensus-based deliberation. This consensus process can

be regarded as a social choice function [4, 14] which maps individual preferences to com-

munity preferences. Wikipedia can thus be thought of as a group of editors with individual

preferences for article states, collaborating to optimize articles according to community pref-

erences. Note that these community preferences do not assume the existence of any ground

truth, other than the preferences themselves.

To simulate collaboration, we need a model problem for collaborators to solve. Following

existing literature on social learning, we use the NK model [49] to create NP-hard, nonlin-

ear optimization problems. The NK model produces an objective function with a rugged

landscape, i.e., many local optima. The ruggedness of the model can be tuned through the

parameters N (the dimensionality of the solution space) and K (the level of inderdependence
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between dimensions). Formally, the NK model produces an objective function F mapping a

binary string S of length N to a real value in [0, 1]. Model state is divided into N loci, with

locus i having a binary state Si and a value fi(S) dependent on its own state and on the

state of K random other loci. The functions fi(S) are created by selecting a random value

in [0, 1] for each possible state of locus i and its K neighbors. The value of the model F (S)

is the mean of all locus values fi(S). In our simulations, agents iteratively search for a bit

string S that maximizes F (S).

In a typical social learning model, a set of agents each maintain an estimate of the optimal

state and iteratively update that estimate based on information available from other agents,

according to some learning strategy. In networked social learning, agents are associated

with the nodes of a network and share information only with their neighbors. We define

productivity and performance in terms of the solution values for each time step (averaged

over many trials). We define the performance to be the mean solution value after the process

has converged, while the productivity is the reciprocal of the number of steps required to

converge. We measure the time to convergence as the number of steps required to reach 99%

of the maximum mean solution value.

Without additional constraints, the above model is missing several key properties of real-

world collaborations. In designing our agent-based model, we paid attention to the following

properties.

Limited concern. Agents are concerned only with a subset of the entire state when making

decisions and determining preferences. (On Wikipedia, editors typically interact with

a small subset of the articles.)

Concern-based network. Agents interact with other agents who share a common concern

over some subset of the state. (On Wikipedia, editors interact with others who share

interests in the same articles.)

Unknown objective. Agents rank states in order of preference, but do not have access to

the objective function. (On Wikipedia, there is no ground truth measure of quality.)

Single source of truth. At any given time, the system is in a single state and agent pref-

erences are based on local modifications to that state. (At any point in time, there is

only one current version of Wikipedia.)

2.3.1 Concern-Based Networks

On Wikipedia, editors interact by editing articles and talk pages. Thus, the editors who

interact with each other are exactly those who care about the same content. Rather than
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using arbitrary networks, we devise a network structure inspired by the above observation.

We do so by associating agents with particular loci in the NK model. We also wish to study

the effect of varying network degree, which we achieve through a rewiring process described

below.

Our concern-based networks are generated directly from the structure of the NK model.

The value of each NK locus depends on its own state and the state of K other loci. For each

locus, we define an agent and assign these K + 1 loci as its concern. Next, an agent-agent

co-affiliation network is created by connecting two agents if they share at least one locus

in their concerns. This process is analogous to our construction of WikiProject coeditor

networks.

To create a tunable degree, we duplicate each agent and its concern, then randomly rewire

a fraction of agent concerns before creating the agent-agent network. With no rewiring, the

duplication process creates a high overlap between agent concerns. This overlap results in

redundant links to a small number of agents, rather than unique links to a large number of

agents, and therefore to an agent-agent network with small average degree. By randomly

rewiring the agent concerns, the redundancy is reduced and the average degree of the agent-

agent network is increased.

2.3.2 Networked Learning Strategies

Learning strategies determine how agents update their preferences based on available infor-

mation [7]. Agents can engage in individual learning by applying a hill-climbing algorithm

to their current solution. In each iteration, one bit of the NK solution string is flipped

to maximize the solution value. If no change improves the value, the original solution is

kept. The above strategy relies only on rankings of states, satisfying the unknown objective

assumption. However, it relies on information about the entire state, violating the limited

concern assumption. In order to satisfy this assumption, we also define a local variant in

which only a subset of bits in the NK solution string are considered. This variant reflects a

more realistic style of collaboration, in which individual agents focus on sub-problems.

In social learning, agents can also incorporate information from other agents they are

connected to by an edge. While individual learning always converges to the local maximum

relative to the starting point, social learning strategies allow agents to “jump” to drastically

different solutions with higher local maxima. In our model, we use both the conformity

and best-neighbor strategies from [7]. In the best-neighbor strategy, each agent compares its

solution to a sample of neighbors, and chooses the solution with the highest value. In order

to compare solutions between neighbors, the exact value of the objective function must be

21



known for each solution, so this strategy does not satisfy the unknown objective assumption

or the limited concern assumption. In the conformity strategy, agents simply choose the

most common solution among their neighbors (ties are broken uniformly at random). This

strategy does not rely on solution value at all, so clearly satisfies the unknown objective

and limited concern assumptions. In both cases, a single iteration of individual learning

is performed after each social learning iteration. Because each agent maintains a separate

estimate of the solution, neither strategy satisfies the single source of truth assumption.

2.3.3 Local Majority Strategy

To satisfy the single source of truth assumption, we introduce a new strategy: local majority.

In local majority, agents all begin with the same starting state and apply individual learning

to their concern to generate possible improvements to the solution. Next, a new solution is

constructed by considering each locus of the NK solution individually. Every agent concerned

with a locus votes for its state based on their preferred new solution and the majority state

is chosen. The result of this process is that all agents integrate their solutions into a single

state, which forms the basis for the next iteration. This strategy more realistically reflects

collaborations like Wikipedia: at any given time, a Wikipedia article has a single state,

determined by consensus, but editors may have differing opinions on how to improve that

article.

2.3.4 Simulation results

We simulated 100 trials for rewiring values of 0.0, 0.167, 0.333, 0.5, 0.667, 0.833, and 1.0. For

each trial we generated an NK model with N = 250 and K = 7, generated a concern-based

network, and ran each social learning strategy (Table 2.2) for 300 iterations. For conformity

and best-neighbor strategy, we used a sample size of 3, following [7]. We confirmed that all

trials converged to their maximum value before reaching the last iteration. Networks had

mean degree 116.6 with 1.3 standard deviation, and mean path length of 1.766 with 0.0027

standard deviation. The coefficient of variation for degree is approximately 10%, while only

1% for mean path length, confirming that the rewiring process has a stronger influence on

degree than on path length.

Figure 2.4 shows how agents’ solutions improve after repeated applications of different

learning strategies and rewiring values. Each curve represents an average over 100 trials,

each with 250 agents. The mean performance and productivity are reported in Table 2.3.

For all rewiring values, local strategies are less productive and more performant than their

non-local counterparts. For the best-neighbor strategy, local outperforms global. Local
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Figure 2.4: Mean agent solution value over time, averaged over 100 trials. Strategies are
defined in Table 2.2.

Strategy Performance Productivity

Best+I 0.722 ± 0.001 0.0221 ± 0.0003
Conf+I 0.721 ± 0.001 0.0174 ± 0.0002
Best+LI 0.726 ± 0.001 0.0131 ± 0.0002
Conf+LI 0.586 ± 0.001 0.030 ± 0.001
LMaj+LI 0.729 ± 0.001 0.046 ± 0.002

Table 2.3: Simulated Performance and productivity. Results shown for 100 trials with
P[rewire] = 0. Strategies are defined in Table 2.2. Local best-neighbor out-performs global,
while local conformity is the worst performer in all cases. The local majority strategy is
both most productive and most performant. Local strategies are more productive for the
conform strategy and less productive for the best-neighbor strategy.

conformity performs notably worse than all others. Local majority is both more productive

and more performant than others, with its performance increasing with higher rewiring.

This implies that, at least in a simple collaboration model, performance and productivity

can be simultaneously increased. Furthermore, performance and productivity are potentially

affected by both the choice of learning strategy and the average degree of the agents’ social

network.

The effects of degree on performance and productivity are shown in Figure 2.5 and Ta-

ble 2.4. For non-local versions of both conformity and best-neighbor strategy, there is no

significant effect of degree on performance or productivity. The local best-neighbor strategy

shows reduced performance with increasing degree, but no change in productivity. Local
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Strategy Perf. Std. Coeff. Prod. Std. Coeff.

Best+I -4.2×10−5 4.1×10−5

Conf+I 2.7×10−5 9.4×10−5

Best+LI -9.6×10−4 ∗∗ 7.7×10−5

Conf+LI -1.5×10−3 ∗∗∗ 8.7×10−5 ∗

LMaj+LI 1.2×10−4 ∗∗ -0.038∗∗∗

* p < 0.05. ** p < 0.01. *** p < 0.001.

Table 2.4: Degree regression coefficients for simulations.
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Figure 2.5: Performance and productivity of social learning strategies vs. mean network
degree. Each point represents a single trial of 300 iterations. Strategies are defined in Table
2.2. The local best-neighbor strategy shows decreased performance at high degree, with
no significant change in productivity. Local conformity shows decreased performance and
increased productivity at high degree. Local majority shows the opposite behavior: increased
performance and decreased productivity at high degree, with the productivity showing the
largest effect size of all strategies.
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conformity and local majority show opposite behavior as degree increases: with local con-

formity gaining productivity at the expense of performance, while local majority increases

in performance and decreases in productivity. The largest effect size is achieved for produc-

tivity in the local majority simulation, which is consistent with the productivity behavior

observed in WikiProjects. However, the performance behavior for local majority is opposite

that observed on Wikipedia. These agent-based models confirm that network degree has the

potential to influence the performance and productivity of collaborations. Furthermore, this

influence can be drastically different depending on the strategies used by collaborators.

2.4 Discussion

While existing research into the role of network structure in collaboration has focused on nu-

merical simulations and lab experiments, analysis of large real-world systems is an important

next step. Our empirical analysis contributes several findings towards a better understand-

ing of large, decentralized, real-world collaboration. We observe several results consistent

with previous work: a trade-off between performance and productivity [60, 41], higher per-

formance for shorter path lengths in a conformity setting [7], and a reduction in performance

with increased structural inequality [50]. By using real-world networks, we were also able

to analyze network properties independently. While most existing work has focused on the

importance of path length, our findings suggest degree distribution may be just as, or more,

important. The association of low degree with both high performance and high productivity

is compelling, as it sidesteps the usual trade-off between performance and productivity. In

low-degree networks, agents have more repeated interactions with smaller groups of collabo-

rators, suggesting that small team sizes could be beneficial for large collaborations. Similarly,

the observation that performance is higher in projects with less structural inequality suggests

that, if the challenges of egalitarian organizing are overcome, decentralized collaborations

may produce better outcomes than those with centralized, top-down structures.

Our agent-based models offer several insights. We observe degree-dependent performance

and productivity for both local conformity and local majority strategies. However, these

two strategies have opposite degree dependence, suggesting that different strategies may

be preferable for high-degree and low-degree networks. Our local majority strategy, de-

signed to satisfy several properties found in real-world collaborations, shows the strongest

effects on performance and productivity as network degree changes. For the local majority

strategy, the relationship between degree and productivity is consistent with our empirical

observations on Wikipedia, suggesting one possible mechanism underlying that productivity

dependence. However, the performance dependence of this strategy is opposite that observed
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on Wikipedia, suggesting that either the local majority strategy is incompatible with actual

behavior on Wikipedia or that other factors outweigh the contribution of mean degree.

Our work has several limitations. Our empirical analysis is purely correlative and cannot

be used to draw conclusions about the causal influence of network structure on collaboration.

However, the consistency of our results with other lab-based and numerical studies suggests

that the causal link is worthy of further study. Similarly, our study focuses entirely on

a single online community, and while the results are suggestive, they do not necessarily

generalize. We have focused on structure, ignoring content-related variables. For simplicity,

we have assumed unweighted edges and measured work by revision counts rather than bytes

changed.

Our work suggests several directions for future work. Is the correlation between network

structure, performance, and productivity causal? A time-dependent analysis of our data

could offer insight. Are similar relationships observed in other large-scale collaborations?

Does varying degree independently of path length influence performance and productivity

in a controlled lab setting?

A better understanding of the relationship between network structure and collaboration

outcomes has practical applications. Online communities using recommender systems could

make recommendations guided by desirable network properties. Similarly, network structure

could be used to identify under-performing groups in need of an intervention. The relation-

ship between network structure and learning strategy suggests that behaviors interact with

network structure, which could be used to encourage behaviors complementary to existing

network structure.

2.5 Conclusion

In this paper, we have described the relationship between the structural properties of

WikiProject coeditor networks, their performance, and their productivity. As in other stud-

ies, we see a trade-off between performance and productivity. However, some properties,

such as low degree, are associated with both higher performance and higher productivity.

We also find that the correlations between path length and performance are consistent with

a conformity-based social learning strategy, but not a greedy best-neighbor strategy. We

observe improved performance in more decentralized projects, as has been seen in small-

scale lab experiments. We have also proposed a novel local majority learning strategy that

is more realistic, more productive, and higher performance than existing strategies. While

most previous social learning simulations focus on path length, we observe degree-dependent

performance and productivity in both the local majority strategy and a localized version of
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the conformity strategy. We find that the direction of that dependence varies with the spe-

cific strategy being used. While additional work is needed to determine causal relationships

and the generalizability of our results, we have shown evidence that several phenomena

predicted by numerical and small-scale lab experiments are present in a large, real-world

collaboration. Our results suggest that the success of large-scale collaborations may be

aided by greater decentralization, consensus or conformity-based decision-making, and more

tightly-knit collaborations between smaller teams.
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CHAPTER 3

Small Interlocking Groups Improve Mass

Deliberation in the Presence of Strong Social

Influence

3.1 Introduction

Deliberation enables the generation, aggregation, and synthesis of diverse knowledge

[26, 3, 1, 65], as well as the early identification and resolution of conflict [34]. As a par-

ticipatory process, deliberation builds trust among participants, increases the perception of

fairness, and incentivises cooperation with group decisions [65, 12]. As a dynamic process,

deliberation alters private preferences through discourse [42], sidestepping fundamental lim-

itations of voting, e.g., the Condorcet paradox [19, 14] and Arrow’s impossibility theorem

[4, 14]. Despite these benefits, deliberation becomes prohibitively difficult in larger groups,

due to the increased time and effort needed to reach decisions [30, 34] and to the emergence

of power inequalities [32, 11]. Yet examples of successful mass deliberation do exist, includ-

ing Wikipedia [35, 52], free and open source software projects [8], grassroots protest and

crisis-response networks [39, 15] and self-managed organizations [55]. The commonalities

between such projects provide insight into overcoming the challenges of mass deliberation.

Specifically, we evaluate a model of mass deliberation inspired by common network features

observed in successful projects.

Communication in large collaborations is necessarily restricted when group size exceeds

individual members’ capacity for communication. The structure of the resulting communi-

cation network is an important factor in the success of collaborative tasks [50, 59, 60], such

as deliberation. Among successful mass deliberative projects, communication networks often

exhibits a common structure: small interlocking groups [8, 39, 15, 55]. A similar structure has

been observed in the interlocking directorates of corporate boards [48] and the interlocking

publics of the public sphere [42], as well as utilized for collective design in network rotation
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[71]. These interlocking groups have been given various names: committees, working groups,

projects, modules, affinity groups, circles, teams, cores, nodes, zones, cells, or syndicates.

We shall use the term pods to encompass all groups exhibiting two key characteristics: small

enough to enable deliberation, and interlocking to enable information diffusion. We shall

use the term network deliberation to refer to mass deliberation using an interlocking pod

structure. Communication network structure also influences the success of collaborations by

limiting the maximum speed of information diffusion [56, 60, 59, 7, 38, 25, 50]. Structurally

efficient networks, those with typically short paths between individuals, enable fast diffusion

and favor exploitation of known information over exploration of the unknown [56, 7]. In the

context of network deliberation, structural efficiency is determined by how individuals are

assigned to pods. We will focus on two such methods: one efficient, one inefficient.

Collective tasks such as deliberation are influenced not only by communication structure,

but also by individual behavior. Individuals weigh social influence against their personal

knowledge and expertise [13]. Even in a collective setting, individuals sometimes work inde-

pendently to search for new and innovative ideas [56, 7], to utilize their unique information

and perspectives [44], and to critically evaluate the ideas of others [69]. Alternatively, indi-

viduals can defer to others in order to exploit and propagate good ideas [7, 13], to conserve

their own resources through free-riding and social loafing [48], or due to a high level of

trust [71] or social influence [5, 77]. Individual behavior interacts with network structure to

vary the level of exploration of new ideas versus the exploitation of known information [7].

While the focus of network deliberation is structural, the effect of network structure must

be understood in the context of individual behavior and social dynamics.

We apply a formal social learning framework to model network deliberation. Specifically,

we address two questions. How effective is network deliberation compared to conventional

single-group deliberation? And how do network efficiency and individual behavior influence

the outcome of network deliberation? We present the following three contributions. First,

network deliberation out-performs conventional deliberation in both solution speed and qual-

ity when agents rely heavily on social learning. This suggests that network deliberation is

a promising deliberation design for groups with a high degree of social influence. Second,

network deliberation performs best on structurally efficient networks when agents exhibit

conformist behavior, while it performs best on structurally inefficient networks when agents

greedily maximize solution quality, consistent with findings for conventional networks [7].

Third, the naive greedy strategy can be modified to improve performance on conventional

networks despite using strictly less information. In the case of network deliberation, the

naive and modified greedy strategies are equivalent.
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3.2 Methods

Deliberation can be modeled as a form of collective problem-solving and social learning in

which agents hold private beliefs, share information with their neighbors, and update their

beliefs based on a combination of individual analysis and social influence. Following existing

models of collective problem-solving [56, 7, 38], our model comprises: 1. a collective task, 2.

a network, and 3. a learning strategy. Agents maintain a candidate solution to the task and

iteratively apply their learning strategy to the available information, yielding an updated

candidate.

3.2.1 Overview

As their collective task, agents seek an optimal point on a rugged fitness landscape. This

landscape is generated using the NK model [49, 82] (see Appendix A). The NK model is a

“tuanbly rugged” objective function parameterized by two variables: the number of bits in

the input string (N), and the number bits used to compute each contribution to the objective

function (K + 1). These parameters can be used to tune problem size and complexity,

respectively. The resulting objective function maps N -bit strings to real numbers in [0, 1].

To model network deliberation, we construct interlocking networks in stages. At each

stage, agents are partitioned into small pods and connected to all other agents in the same

pod. Our choice of pod size is informed by studies of real-world group dynamics. The upper

limit of effective small group size has been estimated variously as five [32], five–eight[58],

and eight [62]. We choose a pod size of 5. Different methods for assigning agents to pods

produce networks with different properties. Interlocking structure is created when agents are

placed with others they have not yet interacted with. We thus require that pod assignment

methods satisfy the following mixing property:

Property 1. For any agent v, and any two assignment stages t, t′, the probability that at

least one neighbor of v at stage t is also a neighbor at stage t′ approaches 0 as |V | grows.

We study two such methods: a random assignment method that produces structurally

efficient networks, and a long-path method that produces inefficient networks. For compar-

ison, we also simulate conventional deliberation. While the potential communication links

in conventional deliberation form a fully connected network, actual communication is better

modeled by preferential attachment [6] or small-world [81] networks (see Methods).

An agent’s learning strategy models both informational constraints and behavioral dy-

namics [56, 7] such as social influence and social loafing [48]. We consider three social learning

strategies. The best-neighbor strategy is the naive greedy strategy: agents simply adopt the
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neighboring solution with the highest value. This strategy requires that agents have the

ability to compare the quality of two arbitrary solutions, a strong assumption represent-

ing either skilled agents, or a simple task. The conform strategy is pure social influence.

Agents adopt the most common solution among their neighbors. This strategy requires no

knowledge of solution quality, modeling contexts where agents are unable to compare solu-

tion quality, or where agents choose not to, as in social loafing [48]. We also introduce the

confident-neighbor strategy, a variant of best-neighbor in which agents announce when they

have the best solution in their neighborhood. This variant makes weaker assumptions about

agent ability but is equivalent to best-neighbor when network deliberation is used. This

strategy allows us to compare low-social influence and high-social influence strategies under

equivalent assumptions of agent ability.

Between each stage of social learning, agents may perform individual learning. Following

existing literature [56, 7], we model individual learning by mutating a single bit of an agent’s

solution, and keeping it if the mutation improves solution quality. A complete learning strat-

egy must also specify how social and individual learning are integrated. Existing literature

[56, 7] applies individual learning only when social learning fails to produce an improved

solution. We refer to this method as fallback individual learning. Fallback can be also be

interpreted as a model of social loafing [48]. For completeness, we include analysis for a

second method in which agents first perform social and individual learning in parallel and

then choose the better of the two learning outputs.

3.2.2 Agent-Based Model

We use an agent-based simualation to model deliberation between individuals. We model

communication between agents using a time-dependent network (V,Et). The vertices V

correspond to the agents (individuals). The edges Et allow agents to exchange information

with their immediate neighbors at time t. Over the course of the simulation, agents seek to

maximize some objective function Q(s). We use binary strings of length d as our solution

space: s ∈ Zd. We generate the objective function Q(s) using the NK model [49, 82] (see

Appendix A).

The simulation begins at time t = 0 by generating a set of initial solutions sv,0 for the

agents. These are generated randomly, with each possible solution having equal probability.

The simulation proceeds iteratively. At time t each agent applies one of several learning

strategies, to determine its preferred solution at time t+1. Learning strategies can rely on the

agent’s own solution, the solutions of its neighbors, and potentially additional information

shared by its neighbors. Learning strategies may also incorporate information about the
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objective function, modeling an agents’ ability to evaluate the quality of solutions. To allow

for ties, learning strategies produce a set of solutions rather than a single solution. In

our simulations, we choose winners at random in the case of a tie. We present results for

1000 randomly generated NK model objectives. with each network/strategy combination

simulated once per objective function. In keeping with other authors [7, 56] we use N = 15

and K = 6. We allow each simulation to proceed for 300 iterations, which we have found

sufficient to guarantee convergence with our chosen parameters.

3.2.3 Networks

We carry out simulations for four different network topologies. In addition to the well-

known preferential-attachment [6] and small-world [81] networks, we construct two types of

networks to model network deliberation. Both types exhibit interlocking structure and satisfy

Property 1. These two network deliberation conditions differ in how agents are assigned to

pods and in the structural efficiency of the resulting network. At each iteration, existing

edges are replaced with cliques corresponding to the pods. An edge is created between

two agents if and only if they share a pod. In random-pod assignment, agents are assigned

to pods at random. This assignment method produces short geodesic paths and efficient

network structure. In long-path assignment, agents are assigned using an algorithm which

guarantees interlocking structure while preventing the creation of long-distance “shortcut”

edges, producing a structurally inefficient network. All networks are constructed with 100

vertices/agents and a mean degree of 4 (pod size of 5).

3.2.4 Conventional Deliberation

We model the communication network structure of conventional deliberation using two static

networks: small-world networks [81], and preferential attachment networks [6]. In typical

deliberative settings, from deliberative assemblies to online forum threads, the contributions

of any member are potentially visible to all other members. The network of potential com-

munication can be modelled by a complete graph. However, a complete graph may not be

the best model for the actual communication that takes place in such a network. In a real-

world deliberation, some participants are more influential than others [36, 74], and many

communications can be missed or ignored by any particular participant.

Human social networks often exhibit large clustering, and short path lengths. To model

such dynamics, we use Watts-Strogatz small-world networks [81]. These networks model, for

example, when participants interact mostly with their strong ties, but occasionally with a

weak tie. Social networks have also been found to exhibit skewed degree distributions with
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long tails [6]. We model these networks using the Barabási-Albert preferential attachment

model. These networks model settings where a small number of individuals produce a dis-

proportionate share of the communication due to factors such as social capital, expertise, or

confidence.

3.2.5 Network Deliberation: Interlock Networks

Both of our network deliberation conditions use networks built from interlocking pods. These

pods are small complete graphs of roughly equal size. At any given time, each agent can

communicate with all other agents in exactly one pod. Periodically, all agents are simul-

taneously reassigned to new pods. These reassignments create an interlocking structure,

allowing information to flow through the entire group. This structure can be represented as

a time-dependent or directed network. The properties of an interlock network depend on the

particular method for assigning agents to pods. Crucially, interlocking structure is created

when agents are placed with others they have not yet interacted with. We thus require that

pod assignment schemes satisfy the mixing property (Property 1).

3.2.5.1 Random-Pod Assignment

The random-pod assignment method (Algorithm 1) simply assigns agents to groups at ran-

dom. Pseudocode for this method is shown in Algorithm 1.

Algorithm 1: Random-Pod Assignment

Data: A vertex list V , the pod size M ∈ Z.
Result: A partition of the vertices.
N ←− d |V |

M
e

P ←− List of N empty sets
for i ∈ 1, . . . ,M do

foreach s ∈ P do
if not V.empty() then

v ←− V.removeRandom()
s.insert(v)

end

end

end
return P

Claim 1. Random-pod assignment satisfies Property 1.
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Figure 3.1: Mean time necessary for a signal broadcast from one node to reach the entire
network. We use mean broadcast time as a measure of geodesic length for time-varying
networks.

Proof. Let v be a vertex of graph G = (V,Et) with a set of M neighbors at stage t denoted

Nt(v). The probability that the kth neighbor chosen at time t′ 6= t belongs to Nt(v), given

that the first k − 1 did not, is:

prepeat(k) =
M − 1

|V | − k

≤ M − 1

|V | −M
.

The probability that none of the M − 1 neighbors chosen at time t′ belong to N(v) thus

satisfies:

pmixed ≥
(

1− M − 1

|V | −M

)M−1

lim
|V |→∞

pmixed = 1

Random pod assignment also creates structurally efficient networks with short geodesic

distances, as shown in Figure 3.1. There has been evidence both for [56, 25, 60, 7] and

against [59, 7] the effectiveness of structurally efficient networks in social learning.

3.2.5.2 Long-Path Pod Assignment

To study the effects of path length, we require an alternative pod assignment method that

produces long paths. However, we must still retain Property 1 such that it is rare for two

agents to repeatedly share the same pod. This property ensures the creation of many new
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edges at each stage, which is difficult–but not impossible–to reconcile with long average path

length. We now present a long-path pod assignment method, which meets both of the above

goals.

We begin with a high-level overview. Agents are assigned an integer position on a 1-

dimensional circular lattice. By preferring short-distance links on this lattice, we maintain

long path lengths. We also partition agents according to the remainder of their position,

modulo some prime, i.e., their residue class. By limiting links to agents in the same residue

class, and using a unique prime at each stage, we ensure that it is rare for multiple agents to

share a pod twice in a row. Specifically, for stages using primes p and q, two agents will share

a pod for both stages when their positions are equal modulo pq. Pseudocode for long-path

assignment is shown in Algorithm 2.

Claim 2. When the pod size M is less than the modulus pt for all stages t, long-path pod

assignment satisfies Property 1.

Proof. Let p and q be co-prime integers used as moduli for stages t and t′ respectively. Let

z(x) denote the integer position of vertex x. Let v be a vertex, and let us assume vertex w

belongs to the same pod as v at both time t and t′. This assumption implies:

z(v) ≡ z(w) (mod p)

z(v) ≡ z(w) (mod q)

=⇒ z(v)− z(w) ≡ 0 (mod p)

≡ 0 (mod q)

= npq for some integer n.

By the definition of the long-path algorithm:

|z(v)− z(w)| ≤ (M − 1)p

=⇒ |n|pq ≤ (M − 1)p

|n|q ≤ (M − 1).

By assumption, q ≥ M , so the above can only be satisfied by n = 0, which in turn implies

v = w.

To see that the long-path procedure produces long geodesics, note that the pods of size M

connect nodes at most (M − 1)pi apart in position, preventing the creation of any shortcut

edges, as long as pi is small compared to |V |. Numerical simulations confirm that the long-

path algorithm produces geodesics larger than random pod assignment (Figure 3.1). The
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Algorithm 2: Long-Path Assignment

Data: A vertex list V , the pod size M ∈ Z, the stage t ≥ 0 ∈ Z, a list of co-prime
integers moduli.

Result: A partition of the vertices.
N ←− d |V |

M
e

P ←− List of N empty sets
if t = 0 then

// Place all vertices in same residue class
p←− 1

else
// Choose integer to define residue class
p←− moduli[t]

end
// Assign vertices to residue classes
R←− List of p empty queues
for z ∈ 0, . . . , |V | − 1 do

R[z mod p].enqueue(V [z])
end
// Divide each residue class into pods
P ←− Empty list of lists.
for r ∈ R do

Nr ←− d |r|M e
Pr ←− List of Nr empty lists
for i ∈ 1, . . . ,M do

for j ∈ 0, . . . , Nr − 1 do
if not r.empty() then

v ← r.dequeue()
Pr[j].append(v)

end

end

end
P.concatenate(Pr)

end
return P
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number of agents may not be an exact multiple of M , so the final pods may be truncated.

However, the network will be a sub-graph of a network that does have a multiple of M nodes,

so the structure will not be fundamentally changed, and these edge effects should become

negligible as the number of agents increases.

3.2.6 Learning Strategies

The choice of network structure defines which agents can exchange information, but not

how those agents act on the information received. An agent’s actions based on available

information are determined by that agent’s learning strategy. Learning strategies can be

divided into individual learning strategies which use only information directly observable by

the agent, and social learning strategies which use information communicated by neighboring

agents. Generally, a learning strategy may incorporate both social and individual compo-

nents. In this paper, we consider three separate strategies: best-neighbor, confident-neighbor,

and conform. Each is combined with the same individual learning strategy.

The social learning strategies available to an individual depend on that individual’s ability

to evaluate the quality of candidate solutions. Individuals with less information about solu-

tion quality, must rely more heavily on the recommendations and influence of their peers. We

now develop a formalism describing an agent’s ability to evaluate the quality of a candidate

solution. This formalism provides precise language for distinguishing between behavioral

and informational constraints on agent behavior.

3.2.6.1 Agent Capabilities

In human social learning, the ability of individuals to evaluate the quality of a solution can

vary with factors such as expertise and task type. When comparing learning strategies, it

will be helpful to classify them according to the capabilities they require of agents. We

formalize these capabilities as oracle functions, which accept one or more task solutions as

input and reveal whether the states satisfy some particular property.

One of the strongest capabilities an agent might posses, is to compare two arbitrary

solutions to determine which yields a higher value of the objective function. We represent

this capability using the arbitrary comparison oracle.

Definition 1. The arbitrary comparison oracle O>(s1, s2) is given by:

O>(s1, s2) ≡ Q(s1) > Q(s2) (3.1)

Under a weaker assumption, agents might be “experts” on their current solution and able
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to compare that particular solution to any other. This ability is represented by a single-

solution comparison oracle.

Definition 2. The single-solution comparison oracle for solution s is given by:

O>
s (s̃) ≡ Q(s̃) > Q(s) (3.2)

In many contexts, it is reasonable to assume that agents can explore the effects of small

changes to their current solution. When the solutions are binary strings, such variations

can be modeled by flipping a single bit of the solution string. We formalize this capability

through the mutation comparison oracle.

Definition 3. The mutation comparison oracle for solution s is given by:

O⊕s (i) ≡ Q(s⊕ ei) > Q(s), (3.3)

where ⊕ represents addition mod 2 and ei represents the binary string with a single 1 at

index i.

3.2.6.2 Mutation-Based Individual Learning

In real-world collaborations, individuals sometimes work independently, even when commu-

nication is available. Independent work might be motivated by practical concerns (such as

distributing labor) or by social dynamics. We model individual learning using single-bit

mutations, following the examples of [56] and [7]. Agents constructs a candidate solution

by flipping a single bit of their solution at an index selected uniformly at random. If the

candidate solution yields a higher value of the objective function, the agent adopts it as the

new solution. As this strategy requires comparing solutions that differ by at most one bit,

an oracle at least as powerful as the mutation comparison oracle is required.

Definition 4. The mutation individual learning strategy LI(v) is defined as:

i ∼ unif(1, d)

LI(v) ≡

{s(v)⊕ ei} if O⊕s(v)(i)

{s(v)} otherwise.
(3.4)

3.2.6.3 Best-Neighbor

Among social strategies, the straightforward greedy approach results in the best-neighbor

strategy, which has been widely used in prior work [56, 60, 7]. In this strategy, an agent
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simply compares the solutions of all agents in its neighborhood and adopts the best. While

straightforward, this strategy makes a strong assumption about agent capabilities: access to

the arbitrary comparisons.

Definition 5. The Best-Neighbor strategy LBN(v) is defined as:

LBN(v) ≡ { s∈S(v) | ∀s̃∈S(v) ¬O>(s̃, s), (3.5)

where S(v) is the multiset of solutions of v’s neighbors.

3.2.6.4 Confident-Neighbor

This paper introduces confident-neighbor, an alternative to the best-neighbor strategy which

relies only on the single comparison oracle and which reduces to best-neighbor for interlocking

pod networks. The confident neighbor strategy also represents a moderate level of social

loafing [48], in which agents do not actively seek to improve their solution, but passively

adopt better solutions if they are presented.

Confident neighbor proceeds in two stages. In the first stage, agents determine if their

current solution is at least as good as all others in their neighborhood. If so, we call the

agent confident. In the second stage, confident agents broadcast their solution to all of their

neighbors. Non-confident agents choose randomly between any broadcast solutions they

receive, or keep their original solution if they receive none.

Definition 6. The confident-neighbor strategy LCN is defined as:

C(v) ≡ { s(w)

| ∀w∈N(v)∀u∈N(w)¬O>
s(w)(s(u)) } (3.6)

LCN(v) ≡

C(v) if C(v) 6= ∅

{ s(v) } otherwise,
(3.7)

where N(v) is the set of vertices neighboring v and s(v) is the current candidate solution for

agent v.

Confident-neighbor can produce a different candidate than best-neighbor as a result of

two subtle but important considerations. First, an agent’s neighbors need not be adjacent

to each other. Second, an agent’s neighbors can be adjacent to others outside that agent’s

neighborhood. As a result, an agent might receive zero, one, or many broadcasts. The

exception is when agents belong to a clique (e.g., in network deliberation), in which case
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agents receive exactly one broadcast for each maximal solution in the clique, thus yielding

the same results as best-neighbor. This equivalence is notable because confident-neighbor

requires only single-state comparisons rather than the arbitrary state comparisons used by

best-neighbor. Best-neighbor thus requires stronger capabilities to achieve the same results

under conventional deliberation, while confident-neighbor requires the same set of capabilities

under both conventional and network deliberation.

3.2.6.5 Conform

In some contexts, agents might rely on information other than solution quality in their learn-

ing strategies. Agents might do so out of necessity if they are not able to compare arbitrary

solutions. Alternatively, agents might ignore solution quality due to social dynamics, e.g.

social loafing [48]. In these contexts, agents might instead evaluate solutions based on pop-

ularity, which produces the conform learning strategy. When using the conform strategy,

agents count the number of times each solution appears among their neighbors, and adopt

the most popular.

Definition 7. The conform strategy LC(v) is defined as:

LC(v) = mode(S(v)), (3.8)

where S(v) is the multiset of candidate solutions for all vertices neighboring v, and mode()

returns a set containing the mode or modes of a multiset.

Note that the conform strategy does not depend on the objective function or any oracles,

meaning it incorporates no new information about the quality of the solutions.

3.2.6.6 Combining Learning Strategies

Models of social learning often combine truly social strategies with individual learning [56,

7, 38]. We find that the method used to combine social and individual strategies can result

in a notable difference in outcome.

Parallel Agents apply both social and individual learning strategies to their initial solution

to produce two competing intermediate solutions, then adopt the better of the two.

This method relies on the arbitrary comparison oracle.

Fallback Agents first apply social learning to the current solution, but ”fall back” to indi-

vidual learning if the result is not an improvement on the original solution [56, 7, 38].
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Fallback relies on the single comparison oracle and could be motivated by limited agent

capability or social loafing.

Serial Agents first perform individual learning to produce an intermediate solution, and

then apply social learning to the intermediate solutions. This method does not rely on

any of the solution comparison oracles.

We follow existing literature by focusing on the fallback method. As a robustness check, we

also consider the parallel method, which uses the same agent capabilities but is arguably

more powerful.

Combined social learning strategies may also differ in their criticality [7, 69]. After com-

bining individual and social learning according to one of the above methods, non-critical

agents immediately adopt the result. Critical agents, on the other hand, compare the qual-

ity of the new solution to their previous solution, only adopting the new one if it provides an

improvement. Note that critical behavior relies on information about solution quality and

requires single-solution comparison capability, or stronger.

3.2.7 Statistical Methods

All comparisons are made using two-tailed paired t-tests. Pairs of observations correspond

to the same instance of the NK-model objective function. Significance values have been

corrected for multiple comparisons using the Bonferroni correction.

3.3 Results

Here we present the results of 1000 runs of an agent-based model of deliberation. In each run,

an NK model is generated (N=15, K=6) and the model is simulated for 300 iterations for

each network/strategy combination. The results of these simulations are shown in Figure 3.2.

Figures 3.3 and 3.4 show pairwise comparisons of solution quality between strategy/network

settings. Figures 3.3–3.10 show the complete solution quality distributions for all settings.

Tables 3.1–3.4 show the t-values and Bonferroni-corrected p-values for comparisons across

networks and strategies.

We find that network deliberation identifies higher quality solutions than conventional

deliberation when agents use the conform strategy, while requiring less time to converge.

Within network deliberation, we find that the structurally efficient random pod network out-

performs the structurally inefficient long-path network when agents use the conform strategy.

However, when either best-neighbor or confident-neighbor is used, the inefficient network is
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preferable, consistent with findings for conventional networks [7]. We also find that the

confident-neighbor strategy matches or outperforms best-neighbor across all networks, de-

spite using strictly less information about solution quality.

3.3.1 Network vs. Conventional Deliberation

We are particularly interested in comparing the performance of network deliberation to that

of conventional single-group deliberation.

When the conform strategy is used, we find that both network deliberation conditions

yield better performance than conventional networks (Figure 3.11). The effect size is substan-

tial. The solution quality distributions (Figure 3.12) show that network deliberation finds

maximal solutions more frequently than conventional. Furthermore, non-maximal solutions

found by network deliberation are typically higher-quality than those found by conventional.

The quality difference is due to a reduction in solution quality in conventional networks that

is not seen for network deliberation. Agents’ transitions between basins of attraction provide

additional insight into the mechanism. In conventional deliberation, transitions to higher

and lower quality basins are nearly equally common (Figure 3.13). For network deliberation,

there is a small bias towards higher quality basins, particularly as time progresses. Similarly,

network deliberation typically converges to a single basin, while multiple basins remain occu-

pied for conventional deliberation (Figure 3.14). So we see that in the conventional setting,

agents converge quickly to sub-optimal basins, and become stuck. While in network delib-

eration, agents converge quickly but continue to explore and transition to preferable basins.

Why does this behavior occur for the conform strategy? And how does network delibera-

tion provide protection? Under the conform strategy, popular solutions can spread quickly

within highly-clustered communities, even if those solutions are low-quality, resulting in an

information cascade [5]. Furthermore, once a community is saturated with a single solution,

agents mutually reinforce each other, preventing any from exploring alternative solutions.

However, network deliberation provides cross-cutting connections to multiple pods which

can outweigh an information cascade originating in a single pod. Network deliberation thus

protects against detrimental effects of social influence, such as information cascades.

In many problem-solving settings, improvements to quality can come at the cost of speed,

as more time is devoted to exploring novel solutions. Such a reduction in speed can result

in increased latency and reduced productivity. However, we find that network deliberation

improves both performance and speed when the conform strategy is used, suggesting that

interlocking network structure enables more efficient exploration.

In contrast to the conform strategy, network deliberation performs comparably or slightly
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eration are shown shaded.
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Strategy Net A Net B B − A t p*
Best Neighbor Pref. Attach. Small World -8.70e-02 -1.33e+01 1.27e-35
Best Neighbor Pref. Attach. Long Path -5.98e-02 -8.62e+00 1.51e-15
Best Neighbor Pref. Attach. Random Pod -1.15e-02 -1.83e+00 4.01e+00
Best Neighbor Small World Pref. Attach. 8.70e-02 1.33e+01 1.27e-35
Best Neighbor Small World Long Path 2.72e-02 4.53e+00 3.88e-04
Best Neighbor Small World Random Pod 7.55e-02 1.18e+01 1.66e-28
Best Neighbor Long Path Pref. Attach. 5.98e-02 8.62e+00 1.51e-15
Best Neighbor Long Path Small World -2.72e-02 -4.53e+00 3.88e-04
Best Neighbor Long Path Random Pod 4.83e-02 7.34e+00 2.69e-11
Best Neighbor Random Pod Pref. Attach. 1.15e-02 1.83e+00 4.01e+00
Best Neighbor Random Pod Small World -7.55e-02 -1.18e+01 1.66e-28
Best Neighbor Random Pod Long Path -4.83e-02 -7.34e+00 2.69e-11
Confident Neighbor Pref. Attach. Small World -7.52e-02 -1.13e+01 2.94e-26
Confident Neighbor Pref. Attach. Long Path 2.39e-03 3.64e-01 4.30e+01
Confident Neighbor Pref. Attach. Random Pod 5.80e-02 8.88e+00 1.86e-16
Confident Neighbor Small World Pref. Attach. 7.52e-02 1.13e+01 2.94e-26
Confident Neighbor Small World Long Path 7.76e-02 1.21e+01 1.08e-29
Confident Neighbor Small World Random Pod 1.33e-01 1.92e+01 1.36e-68
Confident Neighbor Long Path Pref. Attach. -2.39e-03 -3.64e-01 4.30e+01
Confident Neighbor Long Path Small World -7.76e-02 -1.21e+01 1.08e-29
Confident Neighbor Long Path Random Pod 5.56e-02 8.50e+00 4.00e-15
Confident Neighbor Random Pod Pref. Attach. -5.80e-02 -8.88e+00 1.86e-16
Confident Neighbor Random Pod Small World -1.33e-01 -1.92e+01 1.36e-68
Confident Neighbor Random Pod Long Path -5.56e-02 -8.50e+00 4.00e-15
Conform Pref. Attach. Small World 3.60e-02 6.78e+00 1.24e-09
Conform Pref. Attach. Long Path -1.63e-01 -2.22e+01 2.25e-87
Conform Pref. Attach. Random Pod -2.28e-01 -3.19e+01 9.08e-153
Conform Small World Pref. Attach. -3.60e-02 -6.78e+00 1.24e-09
Conform Small World Long Path -1.99e-01 -3.17e+01 1.59e-151
Conform Small World Random Pod -2.64e-01 -4.43e+01 2.20e-236
Conform Long Path Pref. Attach. 1.63e-01 2.22e+01 2.25e-87
Conform Long Path Small World 1.99e-01 3.17e+01 1.59e-151
Conform Long Path Random Pod -6.48e-02 -8.31e+00 1.79e-14
Conform Random Pod Pref. Attach. 2.28e-01 3.19e+01 9.08e-153
Conform Random Pod Small World 2.64e-01 4.43e+01 2.20e-236
Conform Random Pod Long Path 6.48e-02 8.31e+00 1.79e-14

Table 3.1: Two-tailed paired t-values across networks, within strategies. Results are for
fallback individual learning. For all rows, dof=999 and p∗ is the Bonferroni-corrected p-
value with m=60.
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Network Strategy A Strategy B B − A t p*
Pref. Attach. Best Neighbor Confident Neighbor -6.43e-02 -9.39e+00 2.33e-18
Pref. Attach. Best Neighbor Conform 8.96e-02 1.19e+01 6.83e-29
Pref. Attach. Confident Neighbor Best Neighbor 6.43e-02 9.39e+00 2.33e-18
Pref. Attach. Confident Neighbor Conform 1.54e-01 2.06e+01 7.57e-77
Pref. Attach. Conform Best Neighbor -8.96e-02 -1.19e+01 6.83e-29
Pref. Attach. Conform Confident Neighbor -1.54e-01 -2.06e+01 7.57e-77
Small World Best Neighbor Confident Neighbor -5.26e-02 -8.39e+00 9.70e-15
Small World Best Neighbor Conform 2.13e-01 3.52e+01 4.46e-175
Small World Confident Neighbor Best Neighbor 5.26e-02 8.39e+00 9.70e-15
Small World Confident Neighbor Conform 2.65e-01 4.45e+01 1.24e-237
Small World Conform Best Neighbor -2.13e-01 -3.52e+01 4.46e-175
Small World Conform Confident Neighbor -2.65e-01 -4.45e+01 1.24e-237
Long Path Best Neighbor Confident Neighbor -2.12e-03 -3.42e-01 4.39e+01
Long Path Best Neighbor Conform -1.37e-02 -1.71e+00 5.20e+00
Long Path Confident Neighbor Best Neighbor 2.12e-03 3.42e-01 4.39e+01
Long Path Confident Neighbor Conform -1.16e-02 -1.44e+00 8.96e+00
Long Path Conform Best Neighbor 1.37e-02 1.71e+00 5.20e+00
Long Path Conform Confident Neighbor 1.16e-02 1.44e+00 8.96e+00
Random Pod Best Neighbor Confident Neighbor 5.18e-03 8.40e-01 2.41e+01
Random Pod Best Neighbor Conform -1.27e-01 -1.64e+01 1.07e-51
Random Pod Confident Neighbor Best Neighbor -5.18e-03 -8.40e-01 2.41e+01
Random Pod Confident Neighbor Conform -1.32e-01 -1.67e+01 1.39e-53
Random Pod Conform Best Neighbor 1.27e-01 1.64e+01 1.07e-51
Random Pod Conform Confident Neighbor 1.32e-01 1.67e+01 1.39e-53

Table 3.2: Two-tailed paired t-values across strategies, within networks. Results are for
fallback individual learning. For all rows, dof=999 and p∗ is the Bonferroni-corrected p-
value with m=60.
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Strategy Net A Net B B − A t p*
Best Neighbor Pref. Attach. Small World -6.75e-02 -1.13e+01 2.48e-26
Best Neighbor Pref. Attach. Long Path -4.24e-02 -6.78e+00 1.25e-09
Best Neighbor Pref. Attach. Random Pod -8.14e-03 -1.32e+00 1.12e+01
Best Neighbor Small World Pref. Attach. 6.75e-02 1.13e+01 2.48e-26
Best Neighbor Small World Long Path 2.50e-02 4.25e+00 1.42e-03
Best Neighbor Small World Random Pod 5.93e-02 9.38e+00 2.54e-18
Best Neighbor Long Path Pref. Attach. 4.24e-02 6.78e+00 1.25e-09
Best Neighbor Long Path Small World -2.50e-02 -4.25e+00 1.42e-03
Best Neighbor Long Path Random Pod 3.43e-02 5.36e+00 6.14e-06
Best Neighbor Random Pod Pref. Attach. 8.14e-03 1.32e+00 1.12e+01
Best Neighbor Random Pod Small World -5.93e-02 -9.38e+00 2.54e-18
Best Neighbor Random Pod Long Path -3.43e-02 -5.36e+00 6.14e-06
Confident Neighbor Pref. Attach. Small World -4.49e-02 -7.20e+00 7.03e-11
Confident Neighbor Pref. Attach. Long Path -5.03e-03 -7.65e-01 2.67e+01
Confident Neighbor Pref. Attach. Random Pod 2.61e-02 4.02e+00 3.74e-03
Confident Neighbor Small World Pref. Attach. 4.49e-02 7.20e+00 7.03e-11
Confident Neighbor Small World Long Path 3.99e-02 6.96e+00 3.80e-10
Confident Neighbor Small World Random Pod 7.10e-02 1.18e+01 1.98e-28
Confident Neighbor Long Path Pref. Attach. 5.03e-03 7.65e-01 2.67e+01
Confident Neighbor Long Path Small World -3.99e-02 -6.96e+00 3.80e-10
Confident Neighbor Long Path Random Pod 3.11e-02 4.89e+00 7.03e-05
Confident Neighbor Random Pod Pref. Attach. -2.61e-02 -4.02e+00 3.74e-03
Confident Neighbor Random Pod Small World -7.10e-02 -1.18e+01 1.98e-28
Confident Neighbor Random Pod Long Path -3.11e-02 -4.89e+00 7.03e-05
Conform Pref. Attach. Small World 3.67e-02 6.85e+00 7.73e-10
Conform Pref. Attach. Long Path -1.73e-01 -2.40e+01 7.10e-99
Conform Pref. Attach. Random Pod -2.77e-01 -4.08e+01 6.29e-213
Conform Small World Pref. Attach. -3.67e-02 -6.85e+00 7.73e-10
Conform Small World Long Path -2.09e-01 -3.46e+01 3.46e-171
Conform Small World Random Pod -3.14e-01 -5.68e+01 1.63e-313
Conform Long Path Pref. Attach. 1.73e-01 2.40e+01 7.10e-99
Conform Long Path Small World 2.09e-01 3.46e+01 3.46e-171
Conform Long Path Random Pod -1.04e-01 -1.43e+01 8.55e-41
Conform Random Pod Pref. Attach. 2.77e-01 4.08e+01 6.29e-213
Conform Random Pod Small World 3.14e-01 5.68e+01 1.63e-313
Conform Random Pod Long Path 1.04e-01 1.43e+01 8.55e-41

Table 3.3: Two-tailed paired t-values across networks, within strategies. Results are for
parallel individual learning. For all rows, dof=999 and p∗ is the Bonferroni-corrected p-value
with m=60.
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Network Strategy A Strategy B B − A t p*
Pref. Attach. Best Neighbor Confident Neighbor -3.78e-02 -5.94e+00 2.39e-07
Pref. Attach. Best Neighbor Conform 2.00e-01 2.77e+01 3.28e-124
Pref. Attach. Confident Neighbor Best Neighbor 3.78e-02 5.94e+00 2.39e-07
Pref. Attach. Confident Neighbor Conform 2.38e-01 3.40e+01 1.67e-167
Pref. Attach. Conform Best Neighbor -2.00e-01 -2.77e+01 3.28e-124
Pref. Attach. Conform Confident Neighbor -2.38e-01 -3.40e+01 1.67e-167
Small World Best Neighbor Confident Neighbor -1.52e-02 -2.74e+00 3.80e-01
Small World Best Neighbor Conform 3.05e-01 5.30e+01 1.25e-290
Small World Confident Neighbor Best Neighbor 1.52e-02 2.74e+00 3.80e-01
Small World Confident Neighbor Conform 3.20e-01 5.89e+01 0.00e+00
Small World Conform Best Neighbor -3.05e-01 -5.30e+01 1.25e-290
Small World Conform Confident Neighbor -3.20e-01 -5.89e+01 0.00e+00
Long Path Best Neighbor Confident Neighbor -3.88e-04 -6.64e-02 5.68e+01
Long Path Best Neighbor Conform 7.02e-02 9.34e+00 3.64e-18
Long Path Confident Neighbor Best Neighbor 3.88e-04 6.64e-02 5.68e+01
Long Path Confident Neighbor Conform 7.06e-02 9.15e+00 1.83e-17
Long Path Conform Best Neighbor -7.02e-02 -9.34e+00 3.64e-18
Long Path Conform Confident Neighbor -7.06e-02 -9.15e+00 1.83e-17
Random Pod Best Neighbor Confident Neighbor -3.59e-03 -5.46e-01 3.51e+01
Random Pod Best Neighbor Conform -6.84e-02 -9.54e+00 6.11e-19
Random Pod Confident Neighbor Best Neighbor 3.59e-03 5.46e-01 3.51e+01
Random Pod Confident Neighbor Conform -6.48e-02 -8.96e+00 9.43e-17
Random Pod Conform Best Neighbor 6.84e-02 9.54e+00 6.11e-19
Random Pod Conform Confident Neighbor 6.48e-02 8.96e+00 9.43e-17

Table 3.4: Two-tailed paired t-values across strategies, within networks. Results are for
parallel individual learning. For all rows, dof=999 and p∗ is the Bonferroni-corrected p-value
with m=60.
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Figure 3.11: Difference in solution quality between network deliberation and conventional
deliberation. Plots for Best/Confident-Neighbor show results for long-path and small-
world networks, while the plot for conform shows results for random-pod and preferential-
attachment networks. Results are shown for parallel individual learning.

worse than conventional under the best-neighbor and confident-neighbor strategies. This

finding suggests that network deliberation is most beneficial when individuals are relying

on social influence rather thank solution quality, but can potentially be applied in either

context.

The conform strategy models contexts in which individuals rely heavily on social influ-

ence. Such contexts can arise from pro-conformity social norms, high levels of trust, social

loafing, and limited information. As a form of rational ignorance, conformist behavior can

conserve individual resources, but poses the risk of forming information cascades and propa-

gating misinformation and inferior or harmful innovations [5]. Our results show that network

deliberation can greatly improve the outcome of deliberation in the presence of strong social

influence. This insight suggests one possible mechanism behind the success of mass deliber-

ative projects, as well as the potential for network-based interventions in mass deliberation.

3.3.2 Structural Efficiency

The speed at which information can move through a communication network, i.e., it’s struc-

tural efficiency, has been found to influence the success of collective problem-solving. We

might expect the same to be true in network deliberation. In network deliberation, network

structure is created through group membership. We compare the results of two group as-
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Figure 3.12: Distributions of solution quality for social learning on a preferential-attachment
network and random-pod network deliberation. Results are shown for parallel individual
learning.
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Figure 3.13: Number of agent transitions to basins of attraction with higher/lower maxima
at each time step.
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Figure 3.14: Number of basins of attraction occupied by at least one agent at each time step.

signment methods: a random pod assignment yielding an efficient network, and a long-path

method yielding a less efficient network (Figure 3.15). We find that for greedy strategies

(best-neighbor and confident-neighbor), the inefficient network yields the better results. The

results are opposite for the conform strategy, with the efficient network yielding better re-

sults. These results are consistent with those observed for conventional single-group networks

[7], but to the best of our knowledge, they have not been explored for interlocking network

like the ones we use to model network deliberation.

The role of structural efficiency in collective tasks can be partially attributed to diversity

[56, 45]. Greedy strategies such as best/confident-neighbor result in agents adopting the

highest quality solution they have seen so far and discarding all others. Such strategies

quickly reduce the number of solutions present in the population, quickly identifying a local

maximum at the cost of diversity. As a result, agents duplicate efforts during individual

learning, exploring mutations of the same solution. Inefficient networks can mitigate this

effect by slowing the spread of high-quality solutions and allowing time for the exploration

of new and potentially better solutions. Our results show exactly this, with long-path pod

assignment improving the performance of greedy algorithms. The improved performance

of the conform strategy in random pod assignment can be attributed to the converse of

the above. When social influence is strong, efficient networks can interrupt information

cascades by introducing new information from far across the network. Our results are thus

generally consistent with existing theory on structural efficiency and collective problem-

solving. However, we note an interesting deviation: under the conform strategy, long-path

network deliberation out-performs the two conventional networks, both of which are more

efficient.
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Figure 3.15: Difference in solution quality between random-pod (efficient) and long-path
(inefficient) network. Results are shown for parallel individual learning.

3.3.3 Confident-Neighbor Strategy

In general, the best-neighbor strategy requires strong assumptions about agents’ ability to

evaluate solutions. In the special case of network deliberation, the assumptions can be

weakened by applying a variant of the strategy, which has not been previously studied.

The variant, which we call confident-neighbor, is equivalent to best-neighbor for network

deliberation, but not in general. Confident-neighbor thus provides a comparison between

network deliberation and conventional single-group deliberation under weaker informational

assumptions than best-neighbor. Surprisingly, the weaker assumptions of confident-neighbor

lead to higher performance on the preferential attachment network, and similar performance

on the-small world network (within our statistical resolution). Figure 3.16 shows histograms

of the quality difference between confident-neighbor and best-neighbor for both conventional

networks. In the majority of cases, both strategies find comparable solutions. However, we

find that when these strategies do find different solutions, those found by confident-neighbor

are more often better, at least for the preferential-attachment network.

As with conform, the confident-neighbor strategy can be used when available information

is insufficient to use best-neighbor. Unlike conform, confident-neighbor models weak social

influence. The improved performance of confident-neighbor over best-neighbor, despite using

less information, can be attributed at least in part to diversity and exploration. Confident

neighbor takes significantly longer to converge, suggesting it maintains a diversity of solutions
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Figure 3.16: Histograms of the difference in solution quality between confident-neighbor
and best-neighbor for both conventional networks. Results are shown for parallel individual
learning.

and allows more time to explore new solutions. Our results suggest several interventions with

the potential to improve conventional single-group deliberation. In the presence of weak so-

cial influence, reducing the amount of information available can counter-intuitively increase

performance. Conversely, when information is already limited, performance might be in-

creased by weakening social influence. However, while confident-neighbor can increase the

success of conventional deliberation, it performs comparably to network deliberation using

the conform strategy, suggesting that when social influence is strong, network deliberation

remains preferable.

3.4 Discussion

We have proposed and evaluated a model of mass deliberation based on the observed in-

terlocking network structure of successful mass-deliberative projects. Our central finding

suggests that network deliberation can improve deliberative output in the presence of strong

social influence (i.e., the conform strategy). Individuals rely on social influence for a num-

ber of reasons. Strong social influence can stem from social factors such as trust or social

loafing. Alternatively, social influence can be used to supplement individual skill when it is

insufficient for a given task. We see that a variety of contexts can lead to reliance on social
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influence. Empirical evidence suggests the presence of strong social influence in real-world

collaborations such as Wikipedia [67] and in lab studies of human collaboration [59, 7]. In

the case of weak social influence (i.e., the best-neighbor and confident-neighbor strategies),

we do not observe a substantial difference in output quality between network deliberation

and conventional single-group deliberation. In all cases, network deliberation performs bet-

ter than single-group deliberation or comparatively well. Our results suggest that network

deliberation is both a contributing mechanism to the success of mass-deliberative projects

as well as a useful tool for the design of large-scale sociotechnical systems and interventions

for existing systems.

How does network deliberation improve collaborative output? We have found that net-

work deliberation protects against the negative effects of strong social influence by disrupting

information cascades. Rather than allowing individuals to converge to polarized communi-

ties with suboptimal solutions, the interlocking-pod structure of network deliberation allows

agents to continue to explore and improve their solutions.

In order to distinguish between the effects of social influence and individual ability, we

have introduced the confident-neighbor strategy, which (unlike best-neighbor) assumes the

same agent capabilities as the conform strategy (in a critical learning setting). While not

central to our study of network deliberation, our findings regarding the confident-neighbor

strategy have important implications for the study of social learning in general. Our find-

ings show that just as reducing network efficiency can improve solution quality by raising

diversity, reducing the available information can improve the performance of greedy learning

strategies. Our investigation of confident-neighbor stems from a careful formal analysis of

the information required by each strategy. The surprisingly high performance of confident-

neighbor shows the importance of isolating social influence from agent ability.

Our work is limited by several assumptions, which require further investigation to achieve

greater generalizability. We assume a static objective function, while real-world objectives

can change with changing external conditions as well as changing individual preferences. We

also assume a homogeneous strategy across all agents, which raises questions of how different

strategies interact within the same collaboration. We have also assumed that agents are

truthful and do not form coalitions outside of the existing network, both assumptions which

can be violated in real-world settings. We have also assumed that agents have access to

the full solution string, and that agents incorporate all bits of the string into their quality

estimates. Extremely complex real-world tasks might be better-modeled by a collection

of sub-tasks, with agents having access to only a subset of the solution string. Finally,

we have limited our study to learning strategies that explore new solutions solely through

small mutations of existing solutions. Other potential strategies might generate entirely new
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solutions, for example, by combining parts of multiple previous solutions. Such generative

strategies would add the ability to explore a wider range of solutions. While our work extends

the understanding of social learning and collaboration, many questions still remain open for

exploration.

Effective mass deliberation is key to realizing the potential of large-scale collective action

and the democratizing potential of the internet. Our findings suggest that the presence of

small and interlocking pods can contribute to the success of mass deliberation, particularly

when the topic is complex and social influence is strong. These findings have implications

for a range of deliberative contexts: participatory government and budgeting, worker-owned

cooperatives, grassroots social movements, and the governance of decentralized systems (e.g.,

cryptocurrency). By enabling better deliberation at larger scales, we hope this work will

contribute to democratizing the governance of large sociotechnical systems, and empowering

the individuals impacted by those systems.

61



CHAPTER 4

Experimental Evaluation of Network

Deliberaiton

4.1 Introduction

Networks of small interlocking pods appear as a common thread throughout successful large-

scale collaborations. However, it remains unclear whether that network structure plays

a causal role in the success of those collaborations, and whether the specific structural

properties of that interlocking network matter. Observational study suggests a correlation

between properties such as degree, structural efficiency, and structural inequality and the

performance/productivity of collaborations [67]. Numerical simulation suggests a causal

relationship in a simplified theoretical setting (Chapter 3). To bridge these two findings, this

chapter presents the results of an online experiment studying the role of network deliberation

in the evolution of group preferences.

Collaboration and collective action allow groups of individuals to manage shared resources

and combine efforts towards common goals, but also introduce the problem of governance and

collective decision-making. While collective governance of common resources is a historically

hard problem, Ostrom described principles seen in successful systems [65]. More recently, the

proliferation of inexpensive point-to-point global communication via the internet has enabled

a number of successful large-scale collaborations and movements, including free/open-source

software [8, 18, 68], Wikipedia [52, 8, 35], and social movements [79, 39].

Scholars of democracy commonly describe governance systems in terms of two axes: rep-

resentation and argumentation [1, 39]. Here, representation refers to how many people

participate in decision-making, while argumentation refers to the amount of discourse be-

tween the decision-makers. While both can improve governance, they are difficult to achieve

simultaneously [34, 32] and tradeoffs can be made to favor one over the other, as in voting

(high representation, low argumentation) and representative democracy (low representation,

high argumentation).
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We focus on deliberation due to fundamental limitations of voting. Results from social

choice theory show that any ranked-choice voting system is subject to limitations such as the

Condorcet Paradox [19] and Arrow’s Impossibility Theorem [4]. Deliberation offers one way

to avoid these limitations by changing individual preferences [1]. The success of deliberation

at generating consensus has been attributed to its ability to identify and resolve conflict [34].

However, deliberation also carries risks, such as the posibility of pushing individuals towards

extreme and polarized preferences [73].

In any sufficiently large group, it becomes unfeasible for all members to interact with each

other. Understanding collaboration in large groups thus requires attention to the network

structure of who interacts with whom. The field of social learning has studied both simple

estimation tasks [24, 37] and more complex rugged-landscape optimization tasks [56, 7]. Ob-

servational studies have been used to analyze the network structures of online collaborations

[39, 67]. Lab and field studies have also been used to study real-world collaborations on

a small scale [71, 50]. As discussed in Chapter 3, the successful large-scale collaborations

enabled by the internet often exhibit network sructures characterized by small, interlocking

groups, reminiscent of interlocking directorates [57] and interlocking publics [42]. In Chapter

3, we describe agent-based simulations showing that such network deliberation can improve

performance on complex tasks when individuals exhibit strong social influence. Here, we

expand on existing research by performing a controlled online experimental evaluation of

network deliberation. We use periodic polling to track preference evolution, allowing causal

inference in a real-world setting.

While many studies have examined the role of network structure in collaboration, there

has so far been little attention to the interlocking pod structure of network deliberation.

The closest we are aware of is the study of network rotation by Salehi & Bernstein [71]. The

present experiment goes beyond existing work in several ways. Our primarity innovation

is the tracking of preferences throughout the experiment, which allows the quantification

of consensus and social influence. We also include a large single-group control condition.

Through the use of a pseudonymous online platform, we isolate deliberative text and net-

work structure from other social cues that might result in social influence, e.g., tone of voice,

visual appearance. While these factors undoubtedly play an important role in the social

dynamics of deliberation, we are focused specifically on the role of communication network

structure. We also describe multiple network deliberation topologies for achieving efficient

or inefficient networks. For the present study, we focus on an efficient topology. By track-

ing preference evolution, limiting confounding factors, and using a controlled experimental

design, we can examine the dynamics and causality of the relationship between network

structure and preference evolution.
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Observational and numerical findings have shown that successful large-scale collaborations

often exhibit a structure of small, interlocking pods: network deliberation. This pod structure

can be seen in a range of collaborations, including the articles of Wikipedia [67], the projects

and modules of the free/open-source software community [8], and the nodes of Occupy

Sandy [15]. Numerical simulations (Chapter 3) demonstrate the effectiveness of the network

deliberation structure in the presence of social influence.

The experiment described here focuses on several issues. Based on observational and nu-

merical findings that successful large-scale collaborations often exhibit network deliberation

struture, we test the following hypothesis:

H1: Network deliberation results in higher agreement among participants than single large-

group deliberation.

We are also concerned with the dynamics of preference evolution under network deliberation,

which may provide insight into possible mechanisms. One such mechanism proposed in

consensus decision-making literature is the ability to identify and resolve conflict. We thus

also seek to address two research questions:

RQ1: How do preferences evolve throughout network deliberation?

RQ2: How effective is network deliberation at identifying and resolving conflict?

We find difference in preference evolution between network deliberation and conventional

deliberation. Our primary contributions are:

• We find experimental support for the hypothesis that network deliberation is better at

facilitating agreement than conventional deliberation.

• We find evidence suggesting network deliberation can provide protection against infor-

mation cascades.

• We find no evidence that network deliberation facilitates substantial conflict-resolution,

but that it may provide protection against polarization.

We present relevant theory in Section 4.2. We describe the experiment in Section 4.3

and present the results in Section 4.4. We discuss the results in Section 4.5 and conclude in

Section 4.6.
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4.2 Theory

4.2.1 Social Choice Theory

Our analysis of preferences is founded in the formalism of social choice theory [4, 33]. In social

choice theory, individual’s preferences are represented by a ranked ordering of alternatives

(e.g., proposals, candidates). The set of preferences for all individuals in a group is called

the preference profile. A social welfare function can be applied to the profile to generate a

social preference: an ordering of alternatives representing the preference of the group as a

whole. A social choice function represents a voting system: it selects a subset of winners

from the available alternatives.

4.2.2 Quantifying Agreement

Social choice theory typically focuses on identifying and describing the limitations of specific

voting systems. Instead, we build on social choice theory to quantify the level of agreement

in a group, based in individual profiles.

We use ranked-choice polls to construct preference profiles which are used to quantify

agreement and conflict over the course of deliberation. Within social choice theory, agreement

can be defined by a consensus class, a set of preference profiles meeting one of several

consensus criteria [28]. Examples include strong unanimity (of rank orders), unanimity

(of winners), majority (existence of majority), Condorcet (existence of Condorcet winner),

and transitivity (of social preference). On the most restrictive end, in strong unanimity

and unanimity, all decision-makers prefer the same alternative. In contrast, transitivity

only requires that the social preferences induced by individual preferences are transitive.

Distance-rationalizable voting systems are defined by projecting the preference profile onto

the nearest consensus profile according to a suitable distance. For example, Dodgson’s

method [27, 14] defines a distance based on swapping adjacent entries in individual preference

profiles. However, for most voting systems, finding the consensus profile that minimizes

distance is NP-Hard [28]. Social choice theory also provides measures of distances between

two individual preference rankings. These measures can be extended to create measures of

agreement for entire preference profiles that can be calculated efficiently.

One possibility is to measure the distance from strong unanimity. Any distance metric

δ with a range of [0, 1] can be converted to a measure of correlation with range [−1, 1] by

taking 1− 2δ. One such measure is based on the Kendall tau metric, and the corresponding

Kendall tau correlation [53]. The Kendall tau metric is the fraction of pairwise contests

that have different results between two profiles. By averaging the corresponding correlation
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over all pairs of members, an overall measure of agreement can be calculated for the group.

While commonly used in social choice theory, the Kendall tau weights all contests equally,

regardless of the ranks of the alteratives. In practical settings with a small number of

winners, the contests between highly-ranked alternatives are more consequential than those

of low-ranked alternatives; participants don’t care if they disagree on the ordering of losing

alternatives as long as they agree on which ones win and lose. Various weighted extensions

of the Kendall metric have been proposed [75, 16], each with benefits and drawbacks. We

propose our own based on metric structure, uniqueness, and efficiency of calculation, which

we describe below.

4.2.2.1 Weighted Crossing Distance

We propose the following weighted distance metric for preference rankings. Given a set of M

alternatives, there are M − 1 ways to divide an ordering into two nonempty sets of adjacent

alternatives, i.e., a high set and a low set. For a pair of preferences p, q, we define a length

M − 1 crossing vector vm(p, q) to be equal to the number of alternatives in the highest m

positions of p and not in the highest m positions of q (it is easily shown that this measure

is symmetric in p and q). Informally, vm is the number of alternatives that cross place m.

Each element of vm is an integer in the range [0, vmax
m ] dependent on the index:

vmax
m =

m m ≤ (M − 1)/2

M −m (M − 1)/2 < m ≤M − 1.
(4.1)

We construct the weighted crossing distance by taking a weighted sum over this vector.

There are many potential choices for weights. We choose the weight of place m to be equal

to the highest total of all lower ranked places plus one. Thus the weight at index i = M −m
(noting that low rank corresponds to high m) is given by:

wi = 1 +
i−1∑
k=1

wkv
max
k . (4.2)

For example, consider the following two preference orderings (in least-to-most preferred

order):

p = (C,B,E, F,A,D) (4.3)

q = (F,E,B,C,A,D). (4.4)

66



Applying Eq. 4.1 and 4.2 gives the maximum place-values vmax and place weights wi:

vmax = (1, 2, 3, 2, 1) (4.5)

w = (1, 2, 6, 24, 72). (4.6)

Partitioning both vectors at index 3 gives:

p 7→ C,B,E, F,A,D (4.7)

q 7→ F,E,B,C,A,D. (4.8)

Noting that these partitions differ by a single swap (F � C) the corresponding element of

the crossing vector v3 is 1. Applying the same procedure to each index gives the full crossing

vector:

v(p, q) = (1, 2, 1, 0, 0). (4.9)

Taking the inner product with the weight vector gives the total crossing distance:

d(p, q) = v(p, q) · w (4.10)

= 11. (4.11)

Normalizing by the maximum crossing distance 143 gives a normalized distance of approx-

imately 0.08. For comparison, the normalized Kendall tau distance bewtween these two

preferences is 0.40, much larger despite agreeing on the highest two choices.

4.2.3 Quantifying Social Influence

Deliberation is fundamentally a social influence process in which individuals exchange state-

ments with their peers in an effort to influence their preferences. We will thus benefit from

a formalism to quantify and analzye social influence. If two individuals preferences become

closer, can we say whether one influenced the other? And if so, can we say which influence

which? We cannot answer either question with certainty from preferences alone, but we

can construct a reasonable proxy based on some simplifying assumptions. Namely, we will

construct measures of social influence based on the assumptions that:

• The magnitude of an individual’s change in preference increases with their susceptibility

to social influence;

• The magnitude of an individual’s change in preference increases with the magnitude
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of the distance between their preference and the influencing preference.

The distance between two individuals’ preferences is symmetric between the two individuals,

so the latter of the above conditions does not speak to who influences whom. The converse

of the former condition however suggests that the greater the change in an individual’s

preference, the more they have been influenced by other. Thus, if the distance between the

preferences of individuals A and B decreases, and the preference of B changed more than

the preference of A, we assume that individual A influenced individual B. On the other

hand, if the distance increases, we refer to this as negative social influence, suggesting one

individual has influenced another to adopt an opposing preference. Negative social influence

has the potential to produce polarization when individuals with similar views remain similar

to each other, but adjust their views to more strongly oppose the rest of the group. We

now describe two formal measures that use these assumptions to quantify how susceptible

to influence and how potential influential an individual is.

4.2.3.1 Conformity and Hipness

Let X be a set of alternatives (e.g., proposals or candidates) and let L be the set of strict

total orders over X. We represent the preference of an individual p at time t by a strict total

order Rp(t) ∈ L. Given n individuals, we call the n-tuple of their preferences at time t the

profile R(t).

Let d : L × L → R be a dissimilarity function on preferences. We define the mean

dissimilarity of the profile R at time t as:

1

n(n− 1)

∑
p

∑
q 6=p

d (pt, qt) , (4.12)

where pt is shorthand for Rp(t). The above quantity can be interpreted as a measure of

disagreement among a group of individuals.

Let ti be an initial time, and tf be some later time. The negative change in mean

dissimilarity is given by:

∆ =
−1

n(n− 1)

∑
p

∑
q 6=p

[d (pf , qf ))− d (pi, qi)] . (4.13)

This quantity can be interpreted as the increase in agreement within the group between

times ti and tf , with negative values signifying a decrease in agreement.

Measuring only the change in agreement leaves some ambiguities. For instance, changes

in agreement could simply be due to individuals converging towards initially popular pref-
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erences. Alternatively initially unpopular preferences might overtake others in popularity,

which suggests unequal social influence, and might indicate the presence of an information

cascade. We wish to quantify whether a change in agreement/disagreement is due to individ-

uals converging towards initially popular alternatives, or to the the group being persuaded

towards initially unpopular alternatives. In the former case, we would expect the majority

of individuals to change their preferences by a small amount, while a smaller number of

individuals holding unpopular opinions make larger shifts towards popular preferences. In

the latter case, we would expect the opposite: some individuals with unpopular preferences

hold closely to those opinions, while a large number of individuals move away from the

previous popular preferences. So we are interested not just in the total change in agree-

ment/disagreement, but also in how that change is distributed across the individuals in the

group.

We divide the change in agreement between individuals p and q into two parts: that

due to p’s influence on q and vice versa. To apportion the change in agreement between

individuals p and q, we make the assumption that the contribution due to q’s influence on

p’s preferences is proportional to the change in p’s preference. Specifically, we define the

conformity c(p, q) of individual p toward individual q as:

di = d(pi, qi) (4.14)

df = d(pf , qf ) (4.15)

|p| = d(pi, pf ) (4.16)

c(p, q) = −(df − di)
|p|

|p|+ |q|
. (4.17)

These values are illustrated schematically in Figure 4.1. Note that the change in agreement

between two individuals can be written in terms of the conformity:

− (df − di) = c(p, q) + c(q, p). (4.18)

Similarly, the total change in agreement (4.13) can be rewritten as a sum of conformity over

all pairs of individuals:

∆ =
∑
p

∑
q 6=p

c(p, q). (4.19)

By performing only one of the sums above, the change in agreement ∆ can be written as a

sum of terms, each corresponding to one individual. The sum can be performed over either

the first or second argument of c. If the sum is performed over the second argument of c,
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Figure 4.1: Schematic illustration of the quantities used in calculating the social influence
between p and q. Initial preferences are shown as pi and qi with final preferences shown as
pf and qf . The change in agreement from initial to final is primarily due to p’s movement,
so we consider p to be high in conformity, while q is high in hipness.

the result is the mean conformity of a particular individual p toward all others:

C(p) =
∑
q

c(p, q). (4.20)

Alternatively, if the sum is performed over the first argument of c, the result is the mean

conformity of all others toward p, which we call the hipness H(p):

H(p) =
∑
q

c(q, p). (4.21)

Note that a high hipness does not imply that an individual has influenced others to adopt

similar preferences, only that others have adopted such preferences. Both C(p) and H(p)

are equal to ∆ when summed over all individuals, but they describe conceptually different

attributes of an individual. The conformity quantifies how much an individual has increased

agreement by changing their preferences to match others. The hipness quantifies how much

an individual has increased agreement due to holding an unchanging preference near to

others’ final preferences.

4.2.4 Network Topologies

In Chapter 3, we describe two models of network deliberation structure: random-pod and

long-path. In order to expect a measurable difference from the control condition and between

each other, a minimum network size is required. We decribe these considerations below. For

the present experiment, we opt for only a control and random-pod condition based on the

avaialble number of participants.
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4.2.4.1 Network Size

The minimum number of participants required is determined by a number of factors. First,

the long-path assignment method results in a minimum number of pods, determined by the

chosen parameters. Specifically, the pod assignments for each round beyond the first are

determined by a unique prime number, and the number of pods is a multiple of that prime.

For T = 3 rounds, two primes are necessary and choosing the lowest two (2, 3) yields the

lowest minimum number of pods: 3. For all pods to have at least 4 members, the minimum

number of participants in the long-path treatment is 12.

The two network deliberation treatments must also have meaningfully different structural

properties, which also necessitates a minimum number of participants. Structural differences

between these two networks become more pronounced with a greater number of participants.

While properties such as the broadcast time (see Chapter 3) and average geodesic length

can be used to compare the structural efficiency of two networks, they encounter a problem

for these particular networks when there is a small number of rounds: for many pairs of

individuals, no path will exist. In practical terms, an idea proposed by one participant

may not have a plausible path to reach some of the other participants by the end of the

deliberation, even if that idea is repeatedly shared by all who encounter it. As an alternative,

a form of k-connectivty can be used to measure structural efficiency. The k-connectivity is

simply the fraction of possible paths that exist. In other words, if each participant broadcasts

a message, and that message is repeated by all who encounter it, what is the average fraction

of participants a broadcast will reach? Figure 4.2 shows the k-connectivity as a function

of number of participants for both the long-path and random-pod deliberation networks.

While there is no clear threshold for the necessary number of participants, choosing a k-

connectivity of 0.5 (half of possible paths exist) seems a reasonable heuristic. For the chosen

parameters, 35 or more participants are necessary to produce a random-pod network with

> 0.5 k-connectivity and a long-path network with < 0.5 k-connectivity.

Combining the above considerations, an absolute minimum of 12 participants per treat-

ment is necessary to conduct a wave of the experiment, and a minimum of about 35 partic-

ipants per treatment group is necessary to observe differences between the random-pod and

long-path conditions.

4.3 Experimental Study
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Figure 4.2: The k-connectivity of long-path and random-pod network deliberation networks
for T = 3 stages and a pod size of M = 5.

4.3.1 Experimental Design

Participants used a pseudonymous online platform (described in Section 4.3.3) to deliberate

on a policy issue.

The deliberation took place asynchronously over a period of 7 days, from Monday, Novem-

ber 15, 2021 through Sunday, November 21, 2021. The deliberation was divided into 3 rounds

of 2–3 days each. During each round, participants were shown a discussion prompt and were

able to post a response to that prompt (Table 4.1). Participants were able to view and

comment on the posts of other participants assigned to the same pod. Participants were also

able to view posts and comments that were visible to them in previous rounds, but could

only interact or reply to posts and comments in the current round. Before and after each

round, participants completed a ranked-choice poll regarding the deliberation topic, allowing

the evolution of their preferences to be tracked over the course of the experiment.

Participants were recruited from students in an undergraduate university course and re-

ceived extra credit for participating. 65 participants enrolled and completed at least one

round of deliberation. Basic demographic information was collected and is shown in Table

4.2.

Participants were assigned to one of two conditions at the time of enrollment. Assignments

were uniformly at random. We manually confirmed that each condition had comparable
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Stage Prompt
1 Which proposals do you prefer, and why? If there are disagree-

ments, try asking questions to understand the perspective of
others and to understand the causes of the disagreement.

2 In the previous round of discussion, what opinions and reasoning
did you observe in your group? How much agreement was there?
Were there any disagreements or conflicts? If so, what were the
sources of conflict, and how might they be resolved?

3 What seem to be the most popular opinions? Do you agree
with them? Has your opinion changed over the course of the
discussion?

Table 4.1: Prompts shown to participants during each round of deliberation.

Demographic Control Random-Pod
Age 18–24 30 31

25–29 1 0
30–34 0 1
Non-disclosed 2 0

Gender Man 18 14
Non-binary 0 1
Woman 13 17
Non-disclosed 2 0

Race Asian 14 16
Black or African American 1 1
Hispanic 1 0
White 13 11
White, Asian 1 4
Non-disclosed 3 0

Table 4.2: Demographic statistics for experiment participants.
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demographics. The two conditions were:

Control Participants in the control condition engaged in conventional deliberation in a

single large group. Posts and comments by participants in the control condition were

visible to all others in the control condition for the duration of the deliberation.

Random-Pod (Network Deliberation) Participants in this condition were divided into

small pods (≤ 5 participants). Posts and comments made by participants in this

condition were only visible to others in their current pod. Participants in this condi-

tion were assigned to a new pod at the beginning of each round of deliberation using

the random-pod assignment method, producing a structurally efficient communication

network.

4.3.1.1 Ethical Considerations

This study was reviewed by the University of Michigan’s IRB and classified as exempt. To

protect participant privacy, all participants were assigned randomly-generated pseudonyms.

The keys connecting pseudonyms to identifiable information were stored securely and only

available to the researchers. Participants were provided with an email address to report any

harassment, which was continuously monitored throughout the experiment. The delibera-

tions were also regularly reviewed for any disruptive, hateful, or harassing activity.

4.3.2 Deliberation Topic

The policy issue chosen as the topic of deliberation is a crucial component of the experiment.

The topic was chosen carefully according to several criteria:

• Relevant to the experimental population;

• Amenable to participants changing their preferences based on new information or rea-

soning;

• Amenable to a predefined list of proposed solutions;

• Sufficiently complex to have three or more proposed solutions;

• Timely, but unlikely to be influenced by current events during the deliberation.

Participants were students in a university undergraduate course and deliberated on the

topic and format of one section of their final exam. As the outcome of the final poll de-

termined the content of a real portion of their final exam, participants had an intrinsic
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incentive to advocate for their true preferences. The question and alternatives presented to

participants were:

The 2021 [redacted] final exam will include a section worth up to 10% based on

the content covered during the first part of the semester. Which of the following

options should be chosen for the topic and format of that section of the exam?

Prop. 1 Open-ended, partial credit (2 questions, 5 points each) - Ch. 1-2

Prop. 2 Open-ended, partial credit (2 questions, 5 points each) - Ch. 3

Prop. 3 Multiple choice, no partial credit (5 questions, 2 points each) - Ch. 4

Prop. 4 Multiple choice, no partial credit (5 questions, 2 points each) - Ch. 5

Prop. 5 True/false, no partial credit (10 questions, 1 point each) - Ch. 6

Prop. 6 True/false, no partial credit (10 questions, 1 point each) - Ch. 9

4.3.3 Experimental Platform

We have modified the free and open-source Loomio platform [47] to implement network

deliberation. Loomio is a widely-used online deliberation platform which provides both forum

functionality (Figure 4.3) and various forms of voting, including ranked-choice (Figure 4.4).

Loomio is popular among worker-owned cooperatives and grassroots organizations (Loomio

itself is a worker-owned cooperative). Loomio was chosen for its combination of built-in

functionality, existing user base, and open-source extensibility.

The modified platform implements both random-pod and long-path assignment methods

and automatically reassigns participants when the stage is advanced. In addition to network

deliberation features, we have made several modifications used by the experiment. Upon

signing in for the first time, participants are randomly assigned to a treatment condition.

Participants are also assigned an alias which they will use throughout the deliberation (Figure

4.5).

4.4 Results

4.4.1 Preferences and Outcome

We report the outcomes of several voting methods over the course of the deliberation in

Table 4.3 and show the evolution of first-choice vote distributions in Figure 4.6. The pre-

deliberation poll shows similar initial preferences across the control and random-pod groups.
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Figure 4.3: Participants can perform standard forum actions, such as posting and comment-
ing.

Figure 4.4: Participants are presented with a ranked-choice voting screen between rounds of
deliberation.

76



Figure 4.5: Participants are assigned an alias for the duration of the experiment.

Control Random-Pod

Round Condorcet Plurality Borda Condorcet Plurality Borda

0 prop2 prop2 prop1 prop2 prop2 prop2
1 prop1 prop1 prop1 prop2 prop2 prop2
2 prop1 prop1/prop2 prop1 prop2 prop2 prop2
3 prop1 prop1 prop1 prop2 prop2 prop2

Table 4.3: Referendum outcome after each round of deliberation (initial=0).

A Condorcet winner exists in both groups, and in both cases that winner is Prop. 2. Prop

2. also claims a plurality of first-choice votes in both groups. The only notable difference is

that in the control group, Prop. 1 wins under the Borda Count method, suggesting that the

contest between Props. 1 and 2 are very close and that participants who did not list Prop.

1 in first place still ranked it highly.

Over the course of the deliberation, the preference profiles of the control and random-pod

groups show notable differences. In the control group, Prop. 1 becomes the Condorcet winner

after round 1 and wins across all other voting methods. Prop 1. remains the winner in the

control group throughout the rest of the deliberation, with one exception: Prop. 1 and Prop.

2 tie for plurality voting in round 2. In the random-pod group, Prop. 2 remains the winner

across all voting methods throughout the entire deliberation. We compare participants’

preferences before and after the deliberation in Figure 4.7. The most striking feature is that

a number of participants (4) in the control group who initially ranked Prop. 2 highest then

went on to rank Prop 1. the highest in the final poll. These participants are a significant

driver of the switch from Prop 2. to Prop 1. in the control group. While the random-pod

group does show some participants switching away from Prop. 2, those participants shift
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Figure 4.6: Number of first-choice votes for each alternative over the course of the delibera-
tion.

to the less popular Props. 3 and 4 rather than Prop 1. In the sections that follow, we

will further analyze the evolution of participant preferences and the potential mechanisms

driving them.

4.4.2 Activity

Here we describe the trends we observe in participants’ deliberation activity and the po-

tential impact on participant preferences. Overall, the number of comments per participant

shows a heavy-tailed distribution (Figure 4.8) with a mode of one comment per participant.

The random-pod group shows less of a heavy-tail, with more participants posting a single
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Figure 4.7: Histogram of participants’ initial (row) and final (column) first-choice votes.
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Figure 4.8: Histogram of the number of posts made by participants during each round of
deliberation.

comment per round and a smaller maximum count (2–3 comments vs. 3–4 for control). The

random-pod group thus shows a more equal division of activity across participants.

Figure 4.9 shows the comment counts for each round as well as the Shannon entropy of

the distribution of comment counts over participants. The random-pod group shows a lower

total number of comments and a higher entropy, again showing a more equal division of

activity across participants.

The more equal distribution of comments in the random-pod group is consistent with our

expectation that network deliberation promotes equal participation. The reduction in overall

participation is also notable and suggests low participation as a potential consideration in

network deliberation settings.

4.4.3 Deliberation Content

The content of participant comments gives additional insight into how preferences were

infuenced by deliberation. We pay special attention to comments pertaining to the two most

popular alternatives: Props. 1 and 2. Preferences for these alternatives evolved differently

between the control and random-pod groups.

Comments across both groups frequently advocated for Props. 1 and 2 without specifying

a preference between the two:

P09: Opened ended questions allow for partial credit while multiple choice and

true false has no partial credit. I feel comfortable with chapters 1, 2, and 3

[Props. 1 & 2] as they are the easiest. I am least comfortable with auctions

[Prop. 6].

However, some participants advocated for one or the other:
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P64: I think Intro to Networks [Prop. 1] should be chosen. I like the open ended

question format of this, as it allows for partial credit. In addition to this, since

these were the topics that were taught in the beginning they provide a base of

everything we have learned in the class and as a result I think this material would

be very helpful for it to be covered on our final exam.

P10: I prefer the open-ended questions on chapter 3 [Prop. 2] because I feel like

many of these types of questions would have several requirements, so it is very

possible to receive partial credit if you partially understand. The main reason I

choose chapter 3 [Prop. 2] over chapters 1/2 [Prop. 1] is because I don’t know

what questions from chapters 1/2 [Prop. 1] would look like, and I know how to

prepare for chapter 3 [Prop. 2].

While in the minority, some participants advocated for other proposals:

P43: I think the topics covered in chapter 6 [Prop. 5] should definitely be on the

final. I’m personally indifferent between true/false.

4.4.4 Preference Evolution

As shown in Table 4.3 and Figure 4.6, both groups initially preferred Prop. 1, with the

control group switching to Prop. 2 after round 1 while the random-pod group maintained
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Figure 4.10: Treatment-level agreement over the course of the deliberation. Agreement
is calculated as the mean pairwise correlation between participants using either Kendall
corellation (left) or weighted crossing correlation (right).

its initial preference. We now analyze participant preferences and their evolution in more

detail.

4.4.4.1 Agreement

We report the intra-group agreement throughout the course of the deliberation in Figure

4.10. We calculate agreement using both the Kendall correlation and the weighted crossing

correlation. The Kendall correlation is commonly used in social choice and weights contri-

butions from each rank equally. The weighted crossing correlation places a higher weight on

higher-ranked preferences. In both cases, the avarage pairwise agreement follows similar a

similar pattern. Both the control and random-pod groups show an increase in agreement af-

ter the first round of deliberation, followed by a decrease. In the control group, the decrase is

more rapid and more extreme than in the random-pod group. Using weighted crossing agree-

ment, the difference-in-differences between control and random-pod groups is 0.68, noting

that weighted crossing ranges from -1 to +1.

Our results show that in our experiment, the random-pod group experienced a small but

robust increase in agreement, wile the control group experienced a sharp increase followed

by an even sharper decrease. These results support the hypothesis H1 that network deliber-

ation contributes to increased agreement relative to conventional single-group deliberation.

However, this effect is due more to a decrease in agreement within the control group than
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Figure 4.11: Histograms of participants’ first-choice votes before and after each round.

an increase in the random-pod group. After an initial increase in agreement, both groups

showed an unexpected “rebound” effect. In the control group, this rebound resulted in a

net reduction in agreement, suggesting the presence of negative social influence. In other

words, participants altered their preferences to more strongly oppose those they interacted

with. Negative social influence is of interest as a potential driver of polarization.

4.4.4.2 First-Choice Votes

By focusing on first-choice votes and on the most popular alternatives (Props. 1 & 2), we can

offer some insight into the differences in preference evolution we observe between the control

and random-pod groups. Figure 4.11 shows the evolution of first-choice preferences over

the course of each round of deliberation. Initially, the control and random-pod groups had

similar distributions of first-chioce votes for Props. 1 & 2, with both clearly favoring Prop. 2

(13:8 for control and 13:5 for random-pod). However, first-round comments regarding these

two proposals differed substantially between the two groups. In the control group, a majority

of comments (7:2) favored Prop. 1 while in the random-pod group, a majority favored Prop.

2 (9:2). Remarkably, the support expressed for Prop. 1 by the control group during round

1 was counter to the group’s initial preference for Prop. 2. After that round however, a
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majority of control group participants reported a first-choice preference for Prop. 1 over

Prop. 2 (15:9). In the random-pod group, Prop. 2 remained the most popular and received

an even higher share of first-choice votes (16:2) after round 1.

In both the control and random-pod groups, we see round 1 deliberation clearly favoring

one alternative, which then gains a number of first-choice votes, suggesting social influence.

This social influence is further evidenced by the increase in agreement observed for both

groups over the course of round 1 (Figure 4.10).

The control group varies from the random-pod group in that the round 1 advocacy and

subsequent preference shifts are opposite to the original preferences. In other words, there

is evidence of an information cascade flipping the control group’s preference from Prop. 2

to Prop. 1 over the course of round 1. While many factors contribute to the formation of an

information cascade, we suggest that network deliberation structure of the random-pod group

may have reduced the liklihood of such a cascade in that group. The pod structure limits

how many participants can be exposed to influence from any particular individual during

a single round. Furthermore, the more even distribution of participation observed in the

random-pod group provides participants with more accurate information on the preference

distribution of ther peers. The discussion is less skewed towards highly-vocal participants.

In rounds 2 and 3, the preferences for Props. 1 & 2 continued to evolve differently for the

control and random-pod groups (Figure 4.11). In both cases, participants partially reverted

towards their initial preferences. In the control group, particularly during round 2, Prop 1.

lost many of its round 1 gains to Props. 3–6, although it still remained the most popular

first-choice vote, and Prop 2. retained a sizeable minority of first-choice votes. As a result,

the control group exhibited a divergence of preferences after round 2, contributing to the

drop in agreement seen in Figure 4.10. In the random-pod group, many of the participants

who had switched from Prop. 1 to Prop 2. after round 1 switched back, partially reverting

the winning margin of Prop 2. towards its original value and contributing to a reduction in

agreement. However, the observed drop in agreement values can’t be explained by first-choice

votes alone. The two groups show similar distributions of first-choice vote counts (although

assigned to different alterantives) but a notably different level of overall agreement.

4.4.5 Social Influence

To better understand the role of social influence in the evolution of preferences, we report

the conformity and hipness distributions in Figure 4.12. Summing either of these quantities

over all participants yields the overall change in mean agreement: -0.597 for control and

+0.049 for random-pod.
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Figure 4.12: Conformity and hipness by participant, calculated using initial and final pref-
erences. Values are sorted in descending order for ease of comparison.

In the control group, the participants with negative conformity outnumber those with

positive conformity: more participants moved away from others’ preferences than toward

them, resulting in a negative shift in agreement. In the random-pod network deliberation

group, the number of participants with positive conformity is slightly larger than the number

with negative conformity, leading to a slightly positive change in agreement. The difference

between the two groups is most pronounced among small magnitude conformity participants:

those who did not change their preferences much over the deliberation.

Alternatively, we can analyze the change in agreement in terms of hipness. The negative

change in agreement in the control group can be attributed primarily to a small number of

participants with highly-negative hipness. These participants did not change their prefer-

ences much over the course of the deliberation, but other participants’ preferences moved

away from theirs considerably. Among participants in the random-pod network deliberation

group, those with negative hipness have a notably smaller magnitude, resulting in more

agreement.

4.4.5.1 Dynamics of Social Influence

Figure 4.13 shows the conformity and hipness contributions of individual participants after

each round (relative to initial preferences). The sum of positive and negative contributions

(equivalent to the mean difference in agreement) is overlaid. In the control group, conformity

begins mostly positive and high-magnitude after the first round, but switches to mostly
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Figure 4.13: Participant contributions to conformity and hipness at each round.
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negative in subsequent rounds. In contrast, the random-pod group shows a combination

of positive and negative conformity throughout the experiment, with positive conformity

maintaining a small majority. These observations suggest that participants in the control

group first conformed towards initially popular preferences, but shifted away from them

after the second round of deliberation. While in the random-pod group, participants showed

diverse changes in perference with some convergence towards initially-popular preferences.

Analyzing hipness suggests a similar picture. The control group shows overwhelmingly

positive hipness after round 1, with a switch to primarily negative hipness in subsequent

stages. The random-pod group shows primarily positive hipness throughout most of the

experiment, although both positive and negative values are small in magnitude. So in the

control group, changes in preference are divided unevenly between participants. At first,

these changes conform towards the more fixed participants, but after round 2 diverge away

from them. In constrast, within the random-pod group, changes in preference are distributed

more evenly and consistently converge towards the more fixed participants.

4.4.5.2 Interpretation of Social Influence

Combining the above insights from conformity and hipness measures suggests the following.

The negative shift in agreement in the control group is due to a majority of participants

shifting their preferences away (negative conformity) from a small number of stubborn par-

ticipants (highly-negative hipness) without converging on an alternative (lack of positive

conformity). Furthermore, this shift occurs after round 2, following an initial stage of high-

conformity. The random-pod participants also exhibit stubborn participants, but fewer and

with smaller magnitude, and the majority of participants converge toward each other’s pref-

erences (positive conformity).

Our findings show that the random-pod network deliberation group experienced a positive

change in agreement relative to the conventional deliberation control group. The above

analysis of individual preference shifts suggests that the decreased agreement in the control

group is due to social influence leading a number of participants to shift from more popular

preferences to a divergent set of less popular preferences.

4.4.6 Survey

The results of the post-experiment survey are shown in Table 4.4 and Figure 4.14. After

correcting for multiple comparisons using the Šidák correction, the Mann-Whitney test finds

no significant difference between the control and random-pod groups. However the observed

differences (and lack of differences) in median suggest a starting point for future work. We
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Figure 4.14: Participant post-experiment survey responses on a 5-point Likert scale.

Question Median p

Control Random-Pod

Q1: Participants always agreed with each other 2 3 0.070
Q2: Participants reached agreement by the end of the discussion 3 4 0.015
Q3: I changed my mind over the course of the discussion 3 4 0.663
Q4: I was exposed to new information or perspectives 4 4 0.068
Q5: I was comfortable expressing my opinions and ideas 5 5 0.181
Q6: I enjoyed the discussion 4 4 0.722

Table 4.4: Median responses for post-experiment survey (5-point Likert scale). Reported p
values are for a two-sided Mann-Whitney test. The Šidák correction places the threshold at
p < 0.0085 for a FWER of less than α = 0.05.
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expected the random-pod group to be better at identifying and resolving disagreements,

which would result in a lower score for Q1 and a higher score for Q2. Instead, we observe

a higher median score for both. Given that initial preference profiles were similar for the

two groups, the lower perception of agreement in the control group could be driven by a

number of mechanisms, such as higher visibility of disagreements or polarization over the

course of the deliberation. The difference in perceptions of agreement across conventional

and network deliberation could be a fruitful area for future research.

4.5 Discussion

We hypothesized (H1) that network deliberation tends to reach a higher level of agreement

than conventional single-group deliberation. The observed agreement calculated from polls

throughout the experiment experiment supports this hypothesis (Section 4.4.4.1). However,

our hypothesis was based on the assumption that network deliberation would more effec-

tively identify and resolve disagreements, leading us to expect a large increase in agreement

in the random-pod group. Instead, we observe a small increase of agreement within the

random-pod group and a large decrease within the control group. So while we do see more

of an improvement in agreement under network deliberation, our observations are more con-

sistent with a protective effect against a disagreement-producing mechanism, than with the

originally hypothesized agreement-producing mechanism. The participants began with a rel-

atively high level of agreement and disagreements were minor, so a more controversial topic

may be necessary to identify potential conflict-resolution mechanisms.

We also sought to understand how preferences evolve during network deliberation vs.

conventional deliberation (RQ1). We focused our analysis on first-choice votes in particular

(Section 4.4.4.2). We also quantified the observed social influence throughout the experi-

ment (Section 4.4.5.1). In both the control and random-pod group, we observed preferences

shifting in favor of alternatives that received overwhelming support in round 1 delibera-

tion comments. These comments were consistent with initial preferences in the random-pod

group, but counter to initial preferences in the control group. An information cascade, in

which participants conformed to a less popular opinion believing it to be more popular, is

one likely mechanism. The skewed distribution of activity in the control group (Section

4.4.2), as well as the large number of negative-conformity participants (Section 4.4.5) are

both consistent with an information cascade in the control group. In network deliberation,

participants are limited to interacting with others in the same pod, creating a barrier to the

spread of information cascades. Thus, the network deliberation structure may explain why

round 1 comments in the random-pod group were consistent with initial preferences, i.e., did
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not show evidence of an information cascade.

It is interesting to note that while the control group showed considerable positive confor-

mity in round 1, most participants switched to negative conformity in later rounds, while

in the random-pod group, positive conformity was relatively consistent. In other words, the

preferences of the control group converged in round 1, but diverged in later rounds, resulting

in the observed sharp drop in agreement (Figure 4.13). As nothing changed in the control

group between the first and subsequent rounds, it is interesting to consider why the confor-

mity switched from mostly positive to mostly negative, e.g., why preferences diverged during

round 2 after converging in round 1. Possible explanations include a “rebound” effect from

an information cascade or a time-dependent effect only emerging in later rounds.

Motivated by prior literature identifying conflict discovery and resolution as a benefit

of participatory decision-making, we also considered the effect of network deliberation on

conflict resolution (RQ2). Unexpectedly, we found that the random-pod group provided only

a small increase in agreement, but that the control group actually produced disagreement

by the end of the deliberation. Interestingly, the first-choice votes show a similar level of

agreement in the two groups, so the control group disagreement is largely due to second-

choice votes and below. One possible explanation is that participants disagreeing on first-

place votes became more polarized against each other, lowering each other’s top-choice in

their own preferences, but additional research is necessary to test this hypothesis.

We note that in this experiment, the skewed distribution of participation in the control

group acted to amplify proponents of a minority preference, which later became the majority

preference in a possible information cascade. However, a skewed distribution of participa-

tion could potentially have the opposite effect of further amplifying an already majority

preferences and overshadowing minority preferences. A better understanding of the factors

determining which preferences are amplified would contribute to an understanding of when

network deliberation is preferable to conventional.

We also note that the overall level of participation was lower in the random-pod group,

very likely due to the smaller group size. The low level of activity could be one factor

contributing to the lack of conflict identification in the random-pod group. It is thus desirable

to better understand how factors including group size contribute to activity level.

While our experiment included both a control and experimental condition, having only

one of each is a potential limitation. To veryify the robustness of our results, future work

incorporating multiple control and treatment groups is needed.
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4.6 Conclusion

We have reported the results of a controlled experiment comparing an efficient network

deliberation network to conventional single-group deliberation. We found that network de-

liberation produced a more positive change in agreement consistent with our hypothesis.

However, we found that this change was due primarily to a decrease in agreement in the

conventional group, suggesting a mechanism that protects against disagreement rather than

facilitating agreement. We find evidence of an information cascade in the conventional group

strong enough to alter the Condorcet winner. Our findings suggest that protection against

information cascades may be one mechanism underlying the success of network deliberation

in large-scale collaborations.
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CHAPTER 5

Discussion

Socialism would take too many

evenings.

—Attributed to Oscar Wilde by

Michael Walzer [80]

Large-scale participatory governance is, to many, an oxymoron. The assumption that

large-scale coordination requires coercive hierarchy is so pervasive that it is common to see

the words “hierarchy” and “organization” used interchangeably, as in the conventional “org

chart.” Control hierarchies [23], including representative democracy, are indeed very effec-

tive at addressing some of the challenges of large-scale governance. Faced with the historical

difficulty of achieving both large-scale participation and deliberative discourse [1], control

hierarchies defer governance of large groups to a subset of members, enabling more delibera-

tive discourse and more rapid decision-making than traditional consensus deliberations [34].

Hierarchies can also serve to establish consistency and preserve institutions, as the priorities

of elites shift from maximizing group welfare to sustaining their positions, as described by

the iron law of oligarchy [61, 74]. However, the benefits of control hierarchy come with costs.

In terms of principles, hierarchical organizations rely on coercion and power imbalances,

sacrificing egalitarianism. More practically, when information is distributed but decision-

making is centralized, that decision-making necessarily excludes potentially useful informa-

tion. The emergence of successful large-scale, internet-enabled, parrticipatory collaborations

suggests that perhaps, at leaast in some cases, neither the principle of egalitarianism nor

the practical wisdom of the crowd needs to be sacrificed to achieve effective coordination

and collaboration. The key question I have attempted to address is: how do such large-scale

participatory projects achieve success? I have specificaly focused on one challenge facing

such collaborations: how can a group collaborate effectively when it is impractical for all

members to communicate and interaction is restricted to a network.
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To answer the above question, I have introduced, developed, and applied a model of large-

scale group deliberation: network deliberation. As a theoretical model, Network deliberation

encapsulates common structural pattern observed across successful large-scale participatory

projects: a network structure built from small interlocking pods. As with all theoretical

models, many parameters are left variable. In the case of network deliberation, these pa-

rameters include: pod size, pod assignment strategy, and the behavioral/social dynamics

of deliberation. This model can thus be used to analyze how such parameters influence the

success of large-scale participatory projects while providing a common theoretical framework

for making comparisons between different studies.

In the preceeding chapters, I have shown how the network deliberation model can be

used in the analysis of observational studies, numerical simulation, and experiment. A com-

bination of literature reivew and obersvational analysis of English-language Wikipedia (2)

identified a common theme among successful examples: small, tightly-knit groups, inter-

connected through mutual membership: network deliberation. In Wikipedia for example,

articles and their talk pages act as pods, creating venues for small group interactions, with

interlocks created by editors who contribute to multiple articles. Subsequent work inves-

tigates simple models of network deliberation to better understand how and why it helps

large groups effectively self-govern. Both numerical simulations (Chapter 3) and experiment

(Chapter 4) find evidence that network deliberation can improve the effectiveness of large

deliberations relative to conventional single-group deliberation. In particular, these studies

both identify a protective effect against the negative consequences of social influence, such as

information cascades. As such, these studies of network deliberation suggests an interlocking

pod structure may be especially beneficial in settings susceptible to information cascades,

such as those with a high level of social influence.

5.1 Future Work: Deliberative Settings

While the studies presented here confirm the observation that network deliberation some-

times contributes to the success of large-scale deliberation, there are many factors that can

influence the deliberative process. It is difficult to predict whether or how these factors

interact with network deliberation and there remains much work to be done.

5.1.1 Language and Culture

The observational and experimental studies presented focus on the English-lanaguage set-

ting, as well as on subsets of the population who are comfortable with wiki technology and/or
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attend university. It is very possible that cultural norms, level of comfort and familiarity

with technology, and language barriers between group members could have important con-

sequences for large-scale deliberation that interact with the benefits of network deliberaiton.

5.1.2 Modes of Deliberation

There are many ways to design a deliberative interaction, whether online or offline. Any of

the following considerations could have consequences for the successful implementation of

large-scale deliberation.

Synchronous/Asynchronous: Deliberative activity can vary substantially between syn-

chronous and asynchonous settings. Synchronous settings allow more interactivity, but

can potentially include/exclude members based on availability and schedule.

Simultaneous/Sequential: The simplified models studied here assigned individuals to one

pod at a time in order to constrain network structure and study the dynamics of

preference evolution, but real-world collaborations may have individuals participating

in multiple groups simultaneously.

One/Many Topics: All pods might be focused on the same topic, or each might be focused

on a different topic (or sub-topic).

Formal/Informal: Deliberations can vary widely in their level of formality. While

intentionally-planned formal deliberations may be impactful, spontaneous light-hearted

deliberations could be just as impactful. It is interesting to consider how intentional

network structure might be facilitated in spontaneous intereactions.

Public/Private: Deliberations can take place in settings with a range of privacy. Percep-

tion of privacy, as well as comfort and familiarity with other participants may impact

the effectiveness of deliberation.

5.1.3 Facilitation and Moderation

When all members are equal participants in a deliberation, facilitation and moderation are

a challenge. In the experiment reported in Chapter 4, facilitation was achieved through

discussion prompts. Moderation was performed by an experimenter, but the discussion

remained respectful and no moderation actions were required. An active facilitator might

contribute subtantially to the quality of a deliberation, but there are many potential ways

to choose a facilitator from among a group of peers. Similarly, moderation is incredibly
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important for productive deliberation on sensitive topics, and it is not immediately obvious

how moderation might work in a network deliberation environment. Possibilities might

include ad-hoc moderators, or bot/AI-asisted moderation.

5.1.4 Emergent Alternatives

In the simple model of network deliberation presented here, the available alternatives were

determined before the beginning of the deliberation. However, the deliberative process can

produce new ideas and these ideas are sometimes improvements on those previously available

[72]. Additional research is necessary to undertand the consequences of introducing new ideas

into a network deliberation, as well as how and when to introduce those ideas to different

pods for best effect.

5.1.5 Preference Distribution

The initial distribution of preferences could have substantial impact on the outcome of

network deliberation. Additonal research is needed to address the many possible scenarios.

For example, if a preference is held by a small enough fraction of participants, they are

likely to be assigned to different pods and perceive themselves as the only one with that

preference. Network deliberation creates a high likelihood that such a participants will

eventually be assigned to a pod with others sharing their preference, but in strong social

influence settings, they might switch their preferences before then.

5.1.6 Next Steps

The future work needed most immediately is replication of experimental studies of network

deliberation in various contexts. Such replications can test the robustness and generalizabil-

ity of the results reported here. It is also desirable to develop experimental platforms that can

accommodate emergent alternatives that arise during the deliberation, as such alternatives

are often preferred to initial proposals [72]. The question of the role of structural efficiency

also remains. Our numerical studies found that the effects of varying structural efficiency

were much smaller than those caused by adopting network vs. conventional deliberation,

but we have only evaluated structurally efficient networks empirically.

Large-scale empirical studies present practical challenges, such as recruiting and provid-

ing incentives. One possible approach for overcoming these challenges in future studies is

the development of a publicly-available platform that can be adopted by organizations for

practical use, while simultaneously providing empirical data for study.
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5.2 Applications of Network Deliberation

The studies of network deliberation presented here have a double purpose. The first purpose

is to better understand the role of network structure in successful large-scale deliberations

such as Wikipedia. The second is to identify principles that can be used in the analysis

and creation of new sociotechnical systems. This work starts from empirical observations of

collaborations that have done something unusual and attempts to identify robust principles

that might be applied to transform existing collaborations or create new ones. The repeated

appearance of small interlocking groups in successful large-scale participatory collaborations

suggests that network deliberation may be such a principle. The applicability of network

deliberation depends on the ability to exert influence over network structure. It may seem

counterintuitive or even impossible that collaborations and organizations might intentionally

alter their interpersonal network structure. But in fact, countless practices such as job

interviews, letters of recommendation, performance reviews, internships, mentorships, etc.

all serve exactly this purpose; to deliberately shape the social network within a collaboration.

By analogy, the task of deliberately designing a neighborhood might seem impossible, but

urban planners have made a science of it.

One possible application of network deliberation principles is in the design of organiza-

tional structures and procedures. In fact, small interlocking pods are a feature found in

self-managed organizations [55]. As the practices and structures of such organizations are

codified and refined, a better understanding of network deliberation can provide a guide to

constructing more effective organizations and institutions. Simply recognizing the effective-

ness of network deliberation structure suggests dividing larger teams into pods and ensuring

that individuals are active in multiple pods or periodically rotate through them. Similarly,

our studies suggest there may be benefits to having multiple pods working on the same tasks

in parallel, particularly in the early stages of ideation, when the exploration/exploitation

tradeoff is focused more on exploration. Furthermore, as the conesequences of parameters

such as pod size and assignment methods are better understood, this understanding may

inform the structure and composition of teams.

Similarly, network deliberation emerges naturally in technical settings such as work-

ing groups in large collaborations (e.g., WikiProjects), federated social networks (e.g.,

mastodon), and group chat platforms (e.g., discord). The deliberation that takes place on

these platforms is shaped in part by the protocols and user interfaces of the software. The

principles of network deliberation have the potential to inform the design of such protocols

and interfaces in a way that minimizes harm and promotes effective interactions. The suc-

cess of network deliberation favors protocols that allow individuals to participate in multiple
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contexts, e.g., forums, microblogging servers, chat rooms. Similarly, our findings suggest the

importance of being able to subdivide larger contexts into smaller pods.

5.3 Conclusion

Inexpensive, instantaneous, global, peer-to-peer communication has only been possible for

a tiny sliver of recent human history. Existing organizational and institutional structures

have evolved over hundreds or thousands of years. While the full implications of digital com-

munication for human institutions can’t be predicted, our institutions have already started

adapting in exciting ways. In particular, we have seen the emergence of very large col-

laborations with participatory governance, which would have seemed impossible before the

internet. In the research presented here, I have empirically identified one of the common-

alities between these unprecedented projects, namely interlocking networks of small pods:

network deliberation. The agent-based simulation and experiment presented here study the

properties of a simplified model of network deliberation, in order to better unerstand the

principles and mechanisms at work. This research contributes knowledge on the interaction

of network deliberaiton with factors such as network efficiency, individual behavior, and in

particiular, social influence. It is my hope that this work will help large groups collaborate

on common goals in a manner that allows all members to contribute and allows all voices to

be heard.
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APPENDIX A

NK Model

The NK Model [49] is an optimization problem particularly well-suited for modelling complex

tasks. The model is used to create a fitness functionQ(s) over some discrete space S, typically

binary strings of a fixed length. The model is parameterized by two variables. The first,

N , is the dimension of the solution space, i.e., the length of each binary string. The second

parameter, K, determines the “ruggedness” of the fitness function, i.e., the number of local

maxima. In effect, the K parameter allows the complexity of the optimization problem to

be tuned. The ability to tune task complexity makes the NK model well-suited for studying

the role of complexity in various settings. The construction of an NK fitness function from

a set of parameters is a stochastic process. So particular values of N and K define a class

of fitness functions, which can be sampled to produce a specific fitness function.

We now show the construction of the NK model fitness function. A class of NK model

fitness functions can be defined by a tuple of integer parameters (N,K) such that N > 0

and 0 ≤ K < N . We begin by defining N fitness contributions functions:

qi : ZK+1 → [0, 1]. (A.1)

The value of each qi(x) is chosen uniformly at random in the range [0, 1] at the time the

function is defined. We also define N projection operators Pi which select K + 1 bits from a

length-N bit string. Each Pi selects the bit at index i and K other indices, chosen uniformly

at random at the time Pi is constructed. For a solution s, the ith fitness contribution is

evaluated on the K+1 bits selected by the ith projection: qi(Pi(s)). The value of the fitness

function is the mean of all fitness contributions:

Q(s) =
1

N

N∑
i=1

qi(Pi(s)). (A.2)

The parameter K alters the ruggedness of the fitness function by controlling the inter-

dependence between the qi. When K = 0, each qi depends on a single unique index of s,
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allowing the qi to be optimized independently. In this case, Q(s) has a single maximum: the

global maximum. However, for K > 0, two things happen: it becomes possible for each qi

to have multiple local maxima, and some of the qi become coupled due to dependence on

the same indices of s. The result is that as K increases, both the number of local maxima

of Q(s) [82] and the difficulty of simultaneously optimizing the qi increase. In other words,

Q becomes more rugged, and more complex.

The distribution of local maximum values is asymptotically normal for large K [82]. When

a skewed distribution is preferred, it is common to exponentiate the value of Q(s) as a final

step [56, 7, 38].
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